Lim sup oraz lim ciągu funkcji

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
mmss
Użytkownik
Użytkownik
Posty: 154
Rejestracja: 1 lis 2018, o 15:40
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 16 razy
Pomógł: 2 razy

Lim sup oraz lim ciągu funkcji

Post autor: mmss » 28 kwie 2021, o 11:16

Niech dany będzie ciąg funkcji \(\displaystyle{ (f_{i}(x))}\) gdzie każde \(\displaystyle{ f_{i} : X \rightarrow \RR}\).

Czym jest np. \(\displaystyle{ \sup_i(f_{i})}\)? Oczywiście \(\displaystyle{ j \in \NN}\). Rozumiem branie supremum/infinum funkcji na zbiorze, ale po indeksach ciągu?

Czy może jest do branie supremum po wszystkich \(\displaystyle{ f_{i}}\) na zbiorze \(\displaystyle{ X}\)? Raczej nie bo to supremum jest funkcją a nie liczbą.
Ostatnio zmieniony 28 kwie 2021, o 11:44 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

a4karo
Użytkownik
Użytkownik
Posty: 19418
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 7 razy
Pomógł: 3279 razy

Re: Lim sup oraz lim ciągu funkcji

Post autor: a4karo » 28 kwie 2021, o 11:42

to jest prawie tak samo jak `\max(f_1,...,f_n)`, tylko w przypadku nieskończonej rodziny to maximum nie musi istnieć. a supremum tak.

mmss
Użytkownik
Użytkownik
Posty: 154
Rejestracja: 1 lis 2018, o 15:40
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 16 razy
Pomógł: 2 razy

Re: Lim sup oraz lim ciągu funkcji

Post autor: mmss » 28 kwie 2021, o 12:01

Ok to spójrzmy na \(\displaystyle{ \text{max}(f_{1},f_{2})}\) takie że \(\displaystyle{ f_{i} : X \rightarrow \RR}\) gdzie \(\displaystyle{ i = 1,2}\) oraz \(\displaystyle{ X \subset \RR}\). Można łatwo wskazać takie funkcje że miejscami to \(\displaystyle{ f_{1}}\) jest większa od \(\displaystyle{ f_{2}}\) a miejscami na odwrót, oczywiście wszystko na \(\displaystyle{ X}\). Czym jest wtedy \(\displaystyle{ \text{max}(f_{1},f_{2})}\).

a4karo
Użytkownik
Użytkownik
Posty: 19418
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 7 razy
Pomógł: 3279 razy

Re: Lim sup oraz lim ciągu funkcji

Post autor: a4karo » 28 kwie 2021, o 12:10

To jest taka funkcja, którą w punkcie `x` przyjmuje większą z wartości `f_1(x)` i `f_2(x)`

mmss
Użytkownik
Użytkownik
Posty: 154
Rejestracja: 1 lis 2018, o 15:40
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 16 razy
Pomógł: 2 razy

Re: Lim sup oraz lim ciągu funkcji

Post autor: mmss » 28 kwie 2021, o 12:16

No tak, teraz jest jasne. Nie przypuszczałem że tak robimy - myślałem że bierzemy konkretne \(\displaystyle{ f_{i}}\) i definiujemy to jako nasze sup/inf. A chodzi o to aby na całe wyrażenie sup/inf spojrzeć na funkcję od argumentu \(\displaystyle{ x}\) i wybieramy dla każdego \(\displaystyle{ x}\) te \(\displaystyle{ f_{i}}\) która jest sup/inf.

Czy taka funkcja sup/inf ciągu funkcji ma jakieś ciekawe właności typu ciągłość bądź różniczkowalność i czy są one przydatne?

a4karo
Użytkownik
Użytkownik
Posty: 19418
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 7 razy
Pomógł: 3279 razy

Re: Lim sup oraz lim ciągu funkcji

Post autor: a4karo » 28 kwie 2021, o 12:32

Przykład `x^{1/n}` na odcinku jednostkowym pokazuje, że ciągłości nie ma

ODPOWIEDZ