Strona 1 z 1

zbadać jednostajną ciągłość

: 26 lip 2007, o 15:56
autor: Hania_87
\(\displaystyle{ f(x)=\frac{1}{x},x\neq 0}\)

zbadać jednostajną ciągłość

: 26 lip 2007, o 16:23
autor: scyth
Definicja jednostajnej ciągłości:
\(\displaystyle{ \bigwedge_{\varepsilon>0} \bigvee_{\delta>0} \bigwedge_{x, y \in X}\left[ \varrho(x,y) < \delta \Rightarrow \sigma(f(x),f(y))<\varepsilon \right]}\)

Niech więc będzie dane \(\displaystyle{ \varepsilon}\). Ma istnieć \(\displaystyle{ \delta}\) taka, że:
\(\displaystyle{ |y-x|<\delta \Rightarrow |\frac{1}{x}-\frac{1}{y}|<\varepsilon}\).

W wyniku przekształcenia otrzymujemy, że:
\(\displaystyle{ \frac{\delta}{|xy|}<\varepsilon}\)
czyli:
\(\displaystyle{ \delta<\varepsilon |xy|}\).

Czyli dla dowolnego \(\displaystyle{ \delta}\) (i dowolnego \(\displaystyle{ \varepsilon}\)) znajdziemy \(\displaystyle{ x}\) i \(\displaystyle{ y}\) takie, że warunek jednostajnej ciągłości nie będzie spełniony (mówiąc w skrócie blisko zera wszystko się sypie ;)).

Drugi sposób to pokazanie, że w \(\displaystyle{ 0}\) funkcja ma lewostronną granicę różną od prawostronnej.

zbadać jednostajną ciągłość

: 26 lip 2007, o 16:31
autor: Anathemed
Mamy zbadać, czy dla każdego ε > 0 istnieje δ > 0 takie że dla każdych x,y ≠ 0 jeżeli \(\displaystyle{ |x-y| < \delta}\) to \(\displaystyle{ |f(x) - f(y)| < \epsilon}\)

Wybierzmy więc sobie dowolne \(\displaystyle{ \epsilon}\).
Udowodnię, że funkcja f(x) nie jest jednostajnie ciągła w otoczeniu zera.
Załóżmy nie wprost, że f(x) jest ciągła jednostajnie na całej swojej dziedzinie, czyli że istnieje \(\displaystyle{ \delta}\) spełniająca powyższą implikację.

Czyli prawdą jest, że \(\displaystyle{ |f(x) - f(y)| = |\frac{1}{x} - \frac{1}{x}| = |\frac{x-y}{xy}| = |\frac{\delta}{xy}| < \epsilon}\).
Jednak x i y mogą być dowolnie bliskie zeru, czyli lewa strona może być dowolnie duża, czyli istnieją takie x i y, że nierówność ta nie jest prawdziwa. A my założyliśmy nie wprost, że jest prawdziwa dla każdego x i y ≠ 0 - sprzeczność, która kończy dowód.

Tak więc f(x) nie jest jednostajnie ciągła na całej swojej dziedzinie.
Jednak jest ona jednostajnie ciągła na całej swojej dziedzinie z wyłączeniem nieskończenie małego otoczenia zera (a,b), co można udowodnić, wybierając w naszej definicji ciągłości jednostajnej \(\displaystyle{ \delta = |\frac{\frac{1}{2}\epsilon}{ab}|}\)

zbadać jednostajną ciągłość

: 26 lip 2007, o 23:36
autor: Hania_87
Anathemed pisze: Tak więc f(x) nie jest jednostajnie ciągła na całej swojej dziedzinie.
Jednak jest ona jednostajnie ciągła na całej swojej dziedzinie z wyłączeniem nieskończenie małego otoczenia zera (a,b), co można udowodnić, wybierając w naszej definicji ciągłości jednostajnej \(\displaystyle{ \delta = |\frac{\frac{1}{2}\epsilon}{ab}|}\)
i
scyth pisze: Drugi sposób to pokazanie, że w \(\displaystyle{ 0}\) funkcja ma lewostronną granicę różną od prawostronnej.
tego niedokońca rozumię

zbadać jednostajną ciągłość

: 27 lip 2007, o 08:33
autor: scyth
Granicą lewostronną funkcji w zerze jest \(\displaystyle{ -\infty}\), prawostronną \(\displaystyle{ +\infty}\).
Dla każdego \(\displaystyle{ \varepsilon}\) wybierając \(\displaystyle{ x}\)(ujemne) i \(\displaystyle{ y}\)(dodatnie) takie, że \(\displaystyle{ |x-y|<\delta}\) to \(\displaystyle{ |f(x)-f(y)|}\) może byc dowolnie duże.

zbadać jednostajną ciągłość

: 27 lip 2007, o 09:27
autor: Anathemed
Anathemed pisze: Tak więc f(x) nie jest jednostajnie ciągła na całej swojej dziedzinie.
Jednak jest ona jednostajnie ciągła na całej swojej dziedzinie z wyłączeniem nieskończenie małego otoczenia zera (a,b), co można udowodnić, wybierając w naszej definicji ciągłości jednostajnej \(\displaystyle{ \delta = |\frac{\frac{1}{2}\epsilon}{ab}|}\)
Ajaj, błąd... Powinno być: \(\displaystyle{ \delta = \frac{1}{2}\epsilon|min(|a|,|b|)^2|}\)

Przy badaniu jednostajnej ciągłości często oprócz stwierdzenia, czy dana funkcja jest jednostajnie ciągła, czy nie, badamy również dla podzbioru dziedziny danej funkcji, funkcja jest jednostajnie ciągła.

Tutaj okazuje się, że funkcja f(x) nie jest co prawda jednostajnie ciągła w całej swojej dziedzinie, ale jest ciągła jeżeli z dziedziny wyrzucimy dowolne otoczenie zera, czyli dowolny przedział zawierający zero. Ponieważ przedział ten może być dowolnie mały, mówimy że f(x) jest jednostajnie ciągła z wyjątkiem nieskończenie małego otoczenia zera (czyli tego przedziału zawierającego zero).

Teraz, jak udowodnić w takim razie jednostajną ciągłość funkcji f(x) w tej zawężonej dziedzinie?

Wybierzmy sobie ten nasz dowolny przedział zawierający zero, na przykład przedział \(\displaystyle{ (a,b)}\), \(\displaystyle{ a,b > 0}\)

Udowodnimy teraz jednostajną ciągłość z definicji. Wybierzmy zatem dowolne \(\displaystyle{ \epsilon > 0}\).
Musimy udowodnić, że istnieje \(\displaystyle{ \delta}\) spełniająca naszą implikację z definicji.

Udowodnię, że \(\displaystyle{ \delta = \frac{1}{2}\epsilon|min(|a|,|b|)^2|}\)jest naszą szukaną deltą, dla której implikacja w definicji jednostajnej ciągłości jest prawdziwa.

Mamy: \(\displaystyle{ |f(x) - f(y)| = |\frac{1}{x} - \frac{1}{x}| = |\frac{x-y}{xy}| = |\frac{\delta}{xy}| = |\frac{\frac{1}{2}\epsilon|min(|a|,|b|)^2|}{xy}| = \frac{1}{2}\epsilon|\frac{min(|a|,|b|)^2}{xy}|< \frac{1}{2}\epsilon < \epsilon}\) co kończy dowód
(bo dla każdego x,y \(\displaystyle{ x > min(|a|,|b|)}\) i \(\displaystyle{ y > min(|a|,|b|)}\))