granica w zależności od parametru

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
kamfoora
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 5 mar 2014, o 16:32
Płeć: Kobieta
Lokalizacja: Europa

granica w zależności od parametru

Post autor: kamfoora » 8 kwie 2014, o 19:51

zbadaj istnienie granicy
\(\displaystyle{ \lim_{n \to \infty } \frac{1}{ \sqrt{p ^{2}n ^{2}+2n+4 }-(n+p) }}\)
w zależności od wartości parametru \(\displaystyle{ p}\), \(\displaystyle{ p \in \RR.}\)
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

chris_f
Użytkownik
Użytkownik
Posty: 2727
Rejestracja: 14 paź 2004, o 16:26
Płeć: Mężczyzna
Lokalizacja: podkarpacie
Podziękował: 3 razy
Pomógł: 945 razy

granica w zależności od parametru

Post autor: chris_f » 8 kwie 2014, o 20:22

Standardowo, najpierw mnożymy licznik i mianownik przez sumę
\(\displaystyle{ \lim_{n\to\infty}\frac{1}{\sqrt{p^2n^2+2n+4}-(n+p)}=
\lim_{n\to\infty}\frac{\sqrt{p^2n^2+2n+4}+(n+p)}{p^2n^2+2n+4-(n^2+2np+p^2)}=}\)


\(\displaystyle{ \lim_{n\to\infty}\frac{\sqrt{p^2n^2+2n+4}+(n+p)}{(p^2-1)n^2+(2-2p)n+4-p^2}}\)

Teraz dzielimy licznik i mianownik przez \(\displaystyle{ n}\)

\(\displaystyle{ \lim_{n\to\infty}\frac{\sqrt{p^2+\frac{2}{n}+\frac{4}{n}}+1+\frac{p}{n}}{(p^2-1)n+(2-2p)+\frac{4-p^2}{n}}}\)

No i teraz widać, że gdy \(\displaystyle{ p^2-1\neq0}\) to granicą będzie na pewno zero.

Pozostają do sprawdzenia dwa przypadki \(\displaystyle{ p=1}\) i \(\displaystyle{ p=-1}\). Z licznikiem nie ma problemu, bo w obu zawsze będzie dążył do \(\displaystyle{ 2}\).
Musisz sprawdzić co dzieje się z mianownikiem, a to już nietrudne.

stechiometria
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 27 maja 2014, o 06:13
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 1 raz

granica w zależności od parametru

Post autor: stechiometria » 25 lip 2014, o 10:46

W przypadku p= 1 mianownik dąży do 0. Co wtedy? Proszę o wytłumaczenie.

piasek101
Użytkownik
Użytkownik
Posty: 23265
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski
Podziękował: 1 raz
Pomógł: 3197 razy

granica w zależności od parametru

Post autor: piasek101 » 25 lip 2014, o 20:36

Masz \(\displaystyle{ \left[\frac{2}{0}\right]}\) i ...

matematykajestsuper
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 8 kwie 2021, o 18:30
Płeć: Kobieta
wiek: 24

Re: granica w zależności od parametru

Post autor: matematykajestsuper » 11 kwie 2021, o 19:54

rozwiązanie w formie filmiku :) https://www.youtube.com/watch?v=B7HpryAOJeI

ODPOWIEDZ