ost. granica funkcji.

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de'l Hospitala.
darphus
Użytkownik
Użytkownik
Posty: 130
Rejestracja: 25 paź 2010, o 12:54
Płeć: Mężczyzna
Lokalizacja: LUBLIN
Podziękował: 2 razy

ost. granica funkcji.

Post autor: darphus » 6 gru 2010, o 19:03

\(\displaystyle{ \lim_{ x\to0 } \frac{sin3x}{3- \sqrt{2x+9} }}\)
Zastanawiam się czy można to z l'hospitala. niestety nie wiem jak.

Afish
Moderator
Moderator
Posty: 2810
Rejestracja: 15 cze 2008, o 15:45
Płeć: Mężczyzna
Lokalizacja: Seattle, WA
Podziękował: 3 razy
Pomógł: 352 razy

ost. granica funkcji.

Post autor: Afish » 6 gru 2010, o 19:33

Można. Policz pochodną licznika i pochodną mianownika.

darphus
Użytkownik
Użytkownik
Posty: 130
Rejestracja: 25 paź 2010, o 12:54
Płeć: Mężczyzna
Lokalizacja: LUBLIN
Podziękował: 2 razy

ost. granica funkcji.

Post autor: darphus » 6 gru 2010, o 19:57

\(\displaystyle{ \frac{cos3}{ \frac{1}{-2 \sqrt{2x+9} } } \cdot 2}\) I co dalej?

Afish
Moderator
Moderator
Posty: 2810
Rejestracja: 15 cze 2008, o 15:45
Płeć: Mężczyzna
Lokalizacja: Seattle, WA
Podziękował: 3 razy
Pomógł: 352 razy

ost. granica funkcji.

Post autor: Afish » 6 gru 2010, o 20:20

Źle policzyłeś pochodną. W każdym razie jak już ją policzysz, to sprawdź, czy możesz wyliczyć granicę przez podstawienie. Jeżeli nie, to de l'Hospital i tak dalej.

darphus
Użytkownik
Użytkownik
Posty: 130
Rejestracja: 25 paź 2010, o 12:54
Płeć: Mężczyzna
Lokalizacja: LUBLIN
Podziękował: 2 razy

ost. granica funkcji.

Post autor: darphus » 6 gru 2010, o 20:58

to ja powinna byc ta pochodna

Afish
Moderator
Moderator
Posty: 2810
Rejestracja: 15 cze 2008, o 15:45
Płeć: Mężczyzna
Lokalizacja: Seattle, WA
Podziękował: 3 razy
Pomógł: 352 razy

ost. granica funkcji.

Post autor: Afish » 6 gru 2010, o 21:02

\(\displaystyle{ \frac{cos3x}{\frac{-1}{\sqrt{2x+9}}}}\)

darphus
Użytkownik
Użytkownik
Posty: 130
Rejestracja: 25 paź 2010, o 12:54
Płeć: Mężczyzna
Lokalizacja: LUBLIN
Podziękował: 2 razy

ost. granica funkcji.

Post autor: darphus » 6 gru 2010, o 21:08

i teraz dalej pochodna liczyc?

Afish
Moderator
Moderator
Posty: 2810
Rejestracja: 15 cze 2008, o 15:45
Płeć: Mężczyzna
Lokalizacja: Seattle, WA
Podziękował: 3 razy
Pomógł: 352 razy

ost. granica funkcji.

Post autor: Afish » 6 gru 2010, o 21:17

Teraz wstaw zero i sprawdź, co otrzymałeś.

darphus
Użytkownik
Użytkownik
Posty: 130
Rejestracja: 25 paź 2010, o 12:54
Płeć: Mężczyzna
Lokalizacja: LUBLIN
Podziękował: 2 razy

ost. granica funkcji.

Post autor: darphus » 6 gru 2010, o 21:30

\(\displaystyle{ \frac{cos3 \cdot 0}{ \frac{-1}{3} }}\) no to wyjdzie 0

Afish
Moderator
Moderator
Posty: 2810
Rejestracja: 15 cze 2008, o 15:45
Płeć: Mężczyzna
Lokalizacja: Seattle, WA
Podziękował: 3 razy
Pomógł: 352 razy

ost. granica funkcji.

Post autor: Afish » 6 gru 2010, o 22:07

A ile wynosi kosinus zera?

darphus
Użytkownik
Użytkownik
Posty: 130
Rejestracja: 25 paź 2010, o 12:54
Płeć: Mężczyzna
Lokalizacja: LUBLIN
Podziękował: 2 razy

ost. granica funkcji.

Post autor: darphus » 7 gru 2010, o 08:35

1 czyli bedzie wynik ostateczny -3?

Afish
Moderator
Moderator
Posty: 2810
Rejestracja: 15 cze 2008, o 15:45
Płeć: Mężczyzna
Lokalizacja: Seattle, WA
Podziękował: 3 razy
Pomógł: 352 razy

ost. granica funkcji.

Post autor: Afish » 7 gru 2010, o 12:40

Ups, pardon. Źle pochodną policzyłem - zapomniałem przemnożyć przez trójkę w liczniku. Ma być tak:
\(\displaystyle{ \frac{3 \cdot cos3x}{\frac{-1}{\sqrt{2x+9}}}}\)
No i teraz możesz wstawić zero zamiast iksa i liczyć. Powinno wyjść \(\displaystyle{ -9}\)
Ostatnio zmieniony 7 gru 2010, o 18:46 przez Afish, łącznie zmieniany 1 raz.

darphus
Użytkownik
Użytkownik
Posty: 130
Rejestracja: 25 paź 2010, o 12:54
Płeć: Mężczyzna
Lokalizacja: LUBLIN
Podziękował: 2 razy

ost. granica funkcji.

Post autor: darphus » 7 gru 2010, o 16:29

\(\displaystyle{ cos3x \cdot 3=cos 0 czyli 1.}\) a z mianownika wyciagnac piarwiastek z 9 wiec wyjdzie 3 i pomnozcy wszystko bedzie -3 ostatecznie chyba

Afish
Moderator
Moderator
Posty: 2810
Rejestracja: 15 cze 2008, o 15:45
Płeć: Mężczyzna
Lokalizacja: Seattle, WA
Podziękował: 3 razy
Pomógł: 352 razy

ost. granica funkcji.

Post autor: Afish » 7 gru 2010, o 18:46

Nie. \(\displaystyle{ cos(3x) \cdot 3 = cos(0) \cdot 3 = 1 \cdot 3 = 3}\)

darphus
Użytkownik
Użytkownik
Posty: 130
Rejestracja: 25 paź 2010, o 12:54
Płeć: Mężczyzna
Lokalizacja: LUBLIN
Podziękował: 2 razy

ost. granica funkcji.

Post autor: darphus » 7 gru 2010, o 19:08

teraz się zgadza. Dzieki wielkie:)

ODPOWIEDZ