Przemiana izobaryczna - jak to dalej rozwiązać?

Przemiany termodynamiczne. Bilans cieplny. Teoria molekularno-kinetyczna. Fizyka statystyczna.
Lullaby0
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 21 sty 2022, o 20:04
Płeć: Kobieta
wiek: 20

Przemiana izobaryczna - jak to dalej rozwiązać?

Post autor: Lullaby0 » 26 sty 2022, o 23:15

W butli o objętości \(\displaystyle{ V = 0,2\, m^3}\) znajduje się hel pod ciśnieniem \(\displaystyle{ 105\,Pa}\) o temperaturze \(\displaystyle{ 20°C = 293\,K}\) . Do butli wtłoczono \(\displaystyle{ 100\, g}\) helu. Do jakiej temperatury należy ochłodzić butlę, aby ciśnienie nie uległo zmianie?

Mówimy tu o przemianie izobarycznej, gdzie \(\displaystyle{ p = const}\), więc mamy wzór
\(\displaystyle{ p \cdot V = n \cdot R \cdot ΔT}\)
\(\displaystyle{ ΔT = \frac{p \cdot V}{n \cdot R}}\)

Tylko teraz co z tym \(\displaystyle{ n}\)?
I co z tymi \(\displaystyle{ 100\, g}\) helu?
Ostatnio zmieniony 26 sty 2022, o 23:19 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

Awatar użytkownika
pesel
Użytkownik
Użytkownik
Posty: 1683
Rejestracja: 8 cze 2010, o 13:09
Płeć: Mężczyzna
Podziękował: 1 raz
Pomógł: 404 razy

Re: Przemiana izobaryczna - jak to dalej rozwiązać?

Post autor: pesel » 27 sty 2022, o 07:46

Lullaby0 pisze:
26 sty 2022, o 23:15
Tylko teraz co z tym n?
I co z tymi 100g helu?
Z równania Clapeyrona oblicz początkową liczbę moli helu, \(\displaystyle{ n_1}\). Skoro wiesz ile gramów helu dodano to policz ile to było moli. Końcowa liczba moli helu to suma tych dwóch wielkości. No i ponownie z równania Clapeyrona oblicz końcową temperaturę.

Możesz też zauważyć, że:

\(\displaystyle{ pV=n_1RT_1}\)

\(\displaystyle{ pV=n_2RT_2}\)

Z tego wynika, że \(\displaystyle{ n_1T_1=n_2T_2 \to T_2=T_1 \cdot \frac{n_1}{n_2}}\)

gdzie \(\displaystyle{ n_2=n_1+ \frac{m_{He}}{M_{He}} }\)

ODPOWIEDZ