Zasada zachowania pędu

Ruch prostoliniowy, po okręgu, krzywoliniowy. rzuty. Praca, energia i moc. Zasady zachowania.
SZQ_
Użytkownik
Użytkownik
Posty: 27
Rejestracja: 4 gru 2021, o 14:12
Płeć: Mężczyzna
wiek: 18
Podziękował: 11 razy

Zasada zachowania pędu

Post autor: SZQ_ » 26 gru 2021, o 15:12

Pocisk został wystrzelony z działa z prędkością początkową \(\displaystyle{ v_{0} = 500m/s}\) pod kątem \(\displaystyle{ \alpha =}\) 45 stopni do poziomu. Po osiągnięciu najwyższego punktu swego lotu pocisk rozrywa się na dwie równe części. Jedna część spada pionowo w dół. Jak daleko od działa spadnie druga część pocisku przy założeniu, że teren jest płaski? Przysp. ziemskie \(\displaystyle{ g=10m/s^{2}}\).

Zrobiłem rysunek, w punkcie O prędkość początkowa = 500 m/s, rozłożyłem ją na składowe \(\displaystyle{ v_{0x}, v_{0y}}\) i napisałem, że pęd \(\displaystyle{ = \vec{p_{y}}+ \vec{p_{x}} =m( \vec{v_{0x}} +\vec{v_{0y}})}\). W punkcie H, czyli tam, gdzie pocisk się rozdwoi, napisałem, że \(\displaystyle{ \vec{p_{y1}}= \frac{m}{2} \vec{v_{y}}, \vec{p_{x1}} =0}\), to dla jednej części pocisku, tej której leci pionowo w dół. Druga część pocisku: \(\displaystyle{ \vec{p_{y2}} = \frac{m}{2} \vec{v_{y}^{'}}, \vec{p_{x2}} = \frac{m}{2} \vec{v_{x}^{'}}}\).

Pojawiło się tak wiele niewiadomych, że nie widzę szans na rozwiązanie. Zastanawiałem się, czy mogę zastosować zasadę zachowania pędu tylko dla pojedynczej osi, ale a) wydaje mi się, że nie, b) zostaje tyle samo niewiadomych.

janusz47
Użytkownik
Użytkownik
Posty: 7096
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 26 razy
Pomógł: 1531 razy

Re: Zasada zachowania pędu

Post autor: janusz47 » 27 gru 2021, o 09:46

Treść zadania jest niepełna. Brakuje na przykład wysokości \(\displaystyle{ h }\) punktu rozrywu pocisku i czasu \(\displaystyle{ t }\) spadku jednej części pocisku na Ziemię od chwili wybuchu.

korki_fizyka
Użytkownik
Użytkownik
Posty: 654
Rejestracja: 17 lut 2016, o 21:49
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 3 razy
Pomógł: 74 razy

Re: Zasada zachowania pędu

Post autor: korki_fizyka » 29 gru 2021, o 19:57

Akurat wysokość można bardzo łatwo obliczyć \(\displaystyle{ h = \frac{(v_o\sin\alpha)^2}{2g}}\),
a dalej masz tylko składową poziomą pędu: \(\displaystyle{ mv_o\cos\alpha}\), zatem ta druga część nie może spadać swobodnie.

Yaroo10
Użytkownik
Użytkownik
Posty: 23
Rejestracja: 17 lip 2020, o 10:24
Płeć: Mężczyzna
wiek: 25
Lokalizacja: Olsztyn
Podziękował: 9 razy
Pomógł: 1 raz

Re: Zasada zachowania pędu

Post autor: Yaroo10 » 1 sty 2022, o 11:30

Odp. \(\displaystyle{ 37500m}\)

Jeśli potrzebujesz wyjaśnienia, to napisz. Zadanie jest po prostu złożeniem dwóch rzutów (ukośnego i później poziomego).
Ostatnio zmieniony 17 sty 2022, o 14:11 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości: po prostu.

SZQ_
Użytkownik
Użytkownik
Posty: 27
Rejestracja: 4 gru 2021, o 14:12
Płeć: Mężczyzna
wiek: 18
Podziękował: 11 razy

Re: Zasada zachowania pędu

Post autor: SZQ_ » 16 sty 2022, o 09:56

korki_fizyka pisze:
29 gru 2021, o 19:57
Akurat wysokość można bardzo łatwo obliczyć \(\displaystyle{ h = \frac{(v_o\sin\alpha)^2}{2g}}\),
a dalej masz tylko składową poziomą pędu: \(\displaystyle{ mv_o\cos\alpha}\), zatem ta druga część nie może spadać swobodnie.
No właśnie nie może być tylko \(\displaystyle{ mv_o\cos\alpha}\), ponieważ pęd początkowy \(\displaystyle{ = mv_o}\), a pęd w punckie \(\displaystyle{ h_{max}}\) jest równy \(\displaystyle{ p = \frac{m}{2}v_1 - \frac{m}{2}v_2}\). Gdyby \(\displaystyle{ v_1}\) było równe \(\displaystyle{ mv_o\cos\alpha}\), to pęd nie zostałby zachowany.

Dodano po 1 minucie 2 sekundach:
Yaroo10 pisze:
1 sty 2022, o 11:30
Odp. \(\displaystyle{ 37500m}\)

Jeśli potrzebujesz wyjaśnienia, to napisz. Zadanie jest poprostu złożeniem dwóch rzutów (ukośnego i później poziomego).
Bardzo bym prosił :)

korki_fizyka
Użytkownik
Użytkownik
Posty: 654
Rejestracja: 17 lut 2016, o 21:49
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 3 razy
Pomógł: 74 razy

Re: Zasada zachowania pędu

Post autor: korki_fizyka » 17 sty 2022, o 12:16

Yaroo10 pisze:
1 sty 2022, o 11:30
Odp. \(\displaystyle{ 37500m}\)

Jeśli potrzebujesz wyjaśnienia, to napisz. Zadanie jest poprostu złożeniem dwóch rzutów (ukośnego i później poziomego).
Oba rzuty są ukośne, pierwszy do góry (\(\displaystyle{ 90^o > \alpha > 0^o}\)), a drugi w dół (\(\displaystyle{ 360^o >\alpha > 270^o}\)).
SZQ_ pisze:
16 sty 2022, o 09:57
No właśnie nie może być tylko \(\displaystyle{ mv_o\cos\alpha}\), ponieważ pęd początkowy \(\displaystyle{ = mv_o}\), a pęd w punckie \(\displaystyle{ h_{max}}\) jest równy \(\displaystyle{ p = \frac{m}{2}v_1 - \frac{m}{2}v_2}\). Gdyby \(\displaystyle{ v_1}\) było równe \(\displaystyle{ mv_o\cos\alpha}\), to pęd nie zostałby zachowany.
Wypisujesz herezje, w najwyższym punkcie toru \(\displaystyle{ \alpha = 0^o\rightarrow \cos\alpha=1}\) i pęd jest zachowany :!:

janusz47
Użytkownik
Użytkownik
Posty: 7096
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 26 razy
Pomógł: 1531 razy

Re: Zasada zachowania pędu

Post autor: janusz47 » 18 sty 2022, o 12:05

Jak napisałem, w treści zadania brakuje danych. Na przykład wysokości \(\displaystyle{ h }\) punktu rozrywu pocisku czy czasu \(\displaystyle{ t }\) spadku pionowego na Ziemię jednej jego części od momentu wybuchu. Przynajmniej czasu \(\displaystyle{ t. }\)

Z treści zadania wynika, że nie uwzględniamy oporu powietrza.

Sposób rozwiązania zadania w oparciu o zasadę zachowania pędu.

Zakładamy, że czas trwania rozrywu pocisku jest równy zeru.

Do czasu rozrywu pocisk porusza się ruchem ukośnym pod kątem \(\displaystyle{ \alpha = 45^{o} }\) z prędkością początkową \(\displaystyle{ v_{0}= 500 \frac{m}{s}.}\)

Odległość pozioma do miejsca rozerwania się pocisku - najwyższego punktu toru jest równa połowie zasięgu rzutu ukośnego:

\(\displaystyle{ d = \frac{v^2_{0}}{g}\cdot \sin(\alpha)\cdot \cos(\alpha) \ \ (1) }\)

Maksymalna wysokość jaką osięgnie pocisk:

\(\displaystyle{ h = \frac{v_{0}\cdot \sin^2(\alpha)}{2g} \ \ (2) }\)

Z równań \(\displaystyle{ (1), (2) }\) wyznaczamy prędkość pocisku przed rozrywem \(\displaystyle{ v_{p} }\) w najwyższym punkcie:

\(\displaystyle{ v_{p} = v_{0}\cdot \cos(\alpha) = d\cdot \sqrt{\frac{g}{2h}} \ \ (3) }\)

Ruch pionowy w dół ułamka pocisku z wysokości \(\displaystyle{ h }\) opisujemy równaniem (ruch jednostajnie przyśpieszony):

\(\displaystyle{ h = u_{1}\cdot t + \frac{1}{2}g\cdot t^2 \ \ (4)}\)

gdzie \(\displaystyle{ u_{1} }\) jest wartością jego prędkości początkowej.

Z równania \(\displaystyle{ (4) }\)

\(\displaystyle{ u_{1} = \frac{2h -g\cdot t^2}{2t} \ \ (5) }\)

Do opisu ruchu drugiego ułamka pocisku, korzystamy z zasady zachowania pędu:

\(\displaystyle{ m\cdot v_{p} = \frac{1}{2}m\cdot u_{1} + \frac{1}{2}m\cdot u_{2} }\)

\(\displaystyle{ 2v_{p} = u_{1} + u_{2}. }\)

Wektor prędkości \(\displaystyle{ \vec{u}_{2} }\) rozkładamy na składowe:

- poziomą o wartości \(\displaystyle{ u_{2x} = 2v_{p}}\) i składową pionową o wartości \(\displaystyle{ u_{2y}= u_{1}.}\)

Współrzędną \(\displaystyle{ y }\) ruchu drugiego ułamka możemy opisać równaniem:

\(\displaystyle{ y = h + u_{2y}\cdot t_{1} + \frac{1}{2}g\cdot t_{1}^2 \ \ (6) }\)

Czas spadku tego ułamka na Ziemię wyznaczamy z równania \(\displaystyle{ (6) }\)

\(\displaystyle{ 0 = h + u_{2y}\cdot t_{1} + \frac{1}{2}g\cdot t_{1}^2 }\)

\(\displaystyle{ t_{1} = u_{2y} +\sqrt{u^2_{2y} + 2g\cdot h} = u_{1} +\sqrt{u^2_{1} +2g \cdot h} \ \ (7)}\)

Z równań \(\displaystyle{ (5), (7) }\)

\(\displaystyle{ t_{1} = \frac{2h}{g\cdot t} \ \ (8)}\)

Pozostała do wyznaczenia droga pozioma którą przebył drugi ułamek pocisku:

Korzystamy z równania rozkładu:

\(\displaystyle{ u_{2x} = 2v_{p}, }\)

\(\displaystyle{ s - d = u_{2x} \cdot t_{1} = 2v_{p}\cdot t_{1}. }\)

Po uwzględnieniu równań \(\displaystyle{ (3), (8) }\) otrzymujemy:

\(\displaystyle{ s = d\cdot \left(1 + \frac{2}{t}\sqrt{\frac{2h}{g}} \right).}\)

gdzie wysokość rozrywu pocisku \(\displaystyle{ h }\) możemy wyznaczyć z równania \(\displaystyle{ (2).}\)

Istnieje jeszcze inny sposób rozwiązania tego zadania w oparciu o ruchy środka mas całego pocisku i jego odłamków.

a4karo
Użytkownik
Użytkownik
Posty: 20204
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 23 razy
Pomógł: 3429 razy

Re: Zasada zachowania pędu

Post autor: a4karo » 18 sty 2022, o 12:21

Dla mnie zastanawiające jest jak można stosować zasadę zachowania pędu w przypadku gdy działają siły zewnętrzne (wybuch?)

A ROZRYW to taka DUUUUŻA ROZRYWKA zapewne.

janusz47
Użytkownik
Użytkownik
Posty: 7096
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 26 razy
Pomógł: 1531 razy

Re: Zasada zachowania pędu

Post autor: janusz47 » 18 sty 2022, o 13:01

Można szacować przy założeniu, że czas rozrywu \(\displaystyle{ t = 0. }\)

Awatar użytkownika
AiDi
Moderator
Moderator
Posty: 3756
Rejestracja: 25 maja 2009, o 22:58
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 37 razy
Pomógł: 695 razy

Re: Zasada zachowania pędu

Post autor: AiDi » 18 sty 2022, o 13:10

Podział na siły wewnętrzne/zewnętrzne jest umowny. Wybuch w tym przypadku można traktować jako siły wewnętrzne. Przybliżeniem jest pomijanie pędu produktów wybuchu.

Yaroo10
Użytkownik
Użytkownik
Posty: 23
Rejestracja: 17 lip 2020, o 10:24
Płeć: Mężczyzna
wiek: 25
Lokalizacja: Olsztyn
Podziękował: 9 razy
Pomógł: 1 raz

Re: Zasada zachowania pędu

Post autor: Yaroo10 » 18 lut 2022, o 10:32

Dla mnie zastanawiające jest jak można stosować zasadę zachowania pędu w przypadku gdy działają siły zewnętrzne (wybuch?)
Wyobraź sobie, że na czas wybuchu wyłączamy grawitację i zasada zachowania pędu zachodzi w sposób oczywisty, następnie kiedy fragmenty wybuchu mają już nowe prędkości włączamy grawitację i dalej to już tylko rzuty ukośne.
Oba rzuty są ukośne, pierwszy do góry ...
Źle napisałem, tam są 3 rzuty...
Pierwszy po wystrzeleniu - ukośny
Po wybuchu mamy poziomy i spadek swobodny

PS: korki_fizyka
Jak to zrobiłeś, że w cytacie przytoczyłeś konkretnego autora?

korki_fizyka
Użytkownik
Użytkownik
Posty: 654
Rejestracja: 17 lut 2016, o 21:49
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 3 razy
Pomógł: 74 razy

Re: Zasada zachowania pędu

Post autor: korki_fizyka » 18 lut 2022, o 10:47

Yaroo10 pisze:
18 lut 2022, o 10:32
PS: korki_fizyka
Jak to zrobiłeś, że w cytacie przytoczyłeś konkretnego autora?
U góry po prawej stronie postu danego autora jest znaczek ["] najedź myszką, to ci się wyświetli podpowiedź.

ODPOWIEDZ