Punkt w trójkącie

Dział całkowicie poświęcony zagadnieniom związanymi z trójkątami. Temu co się w nie wpisuje i na nich opisuje - też...
Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 8252
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2722 razy
Pomógł: 697 razy

Punkt w trójkącie

Post autor: mol_ksiazkowy » 7 paź 2021, o 18:14

W trójkącie \(\displaystyle{ ABC}\) jest \(\displaystyle{ AB=CD}\) (wysokość). Zbudowane są kwadraty \(\displaystyle{ DBEF}\) i \(\displaystyle{ ADGH}\) przy czym \(\displaystyle{ F, G}\) są na \(\displaystyle{ CD}\). Udowodnić, że proste \(\displaystyle{ CD, \ AE, \ BH}\) mają punkt wspólny

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 8175
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 272 razy
Pomógł: 3192 razy

Re: Punkt w trójkącie

Post autor: kerajs » 8 paź 2021, o 10:59

Założenia:
mol_ksiazkowy pisze:
7 paź 2021, o 18:14
\(\displaystyle{ AB=CD}\) (wysokość). (...) przy czym \(\displaystyle{ F, G}\) są na \(\displaystyle{ CD}\).
wymuszają położenie punktu D na odcinku AB (przypadek skrajny, punkt D jest końcem odcinka AB, degeneruje jeden z kwadratów do punktu).
Niech odcinek AE przecina CD w punkcie P, a odcinek BH przecina CD w punkcie Q,
1. Z tw. Talesa :
\(\displaystyle{ \frac{\left| PD\right| }{\left|AD \right| } = \frac{\left| BE\right| }{\left|AB \right| } }\)
więc:
\(\displaystyle{ \left| PD\right| = \frac{\left|AD \right| \left| BD\right| }{\left|AB \right| } }\)
2. Z tw. Talesa :
\(\displaystyle{ \frac{\left| QD\right| }{\left|BD \right| } = \frac{\left| AH\right| }{\left|AB \right| } }\)
więc:
\(\displaystyle{ \left| QD\right| = \frac{\left|AD \right| \left| BD\right| }{\left|AB \right| } }\)
3. z 1. i 2. wynika iż P=Q

ODPOWIEDZ