maksymalne pole

Dział całkowicie poświęcony zagadnieniom związanymi z trójkątami. Temu co się w nie wpisuje i na nich opisuje - też...
Pietras2001
Użytkownik
Użytkownik
Posty: 49
Rejestracja: 7 gru 2016, o 19:28
Płeć: Mężczyzna
Lokalizacja: Warszawa

maksymalne pole

Post autor: Pietras2001 »

Wśród wszystkich trójkątów wpisanych w okrąg o promieniu \(\displaystyle{ r}\) znajdź ten o największym polu.
Ostatnio zmieniony 11 kwie 2019, o 22:07 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Używaj LaTeXa także do pojedynczych symboli.
a4karo
Użytkownik
Użytkownik
Posty: 22210
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3755 razy

maksymalne pole

Post autor: a4karo »

Ustal sobie dwa wierzchołki na okręgu, a trzecim poruszaj. Kiedy trójkąt będzie miał największe pole?

Jaki stąd możesz wyciągnąć wniosek?
Pietras2001
Użytkownik
Użytkownik
Posty: 49
Rejestracja: 7 gru 2016, o 19:28
Płeć: Mężczyzna
Lokalizacja: Warszawa

maksymalne pole

Post autor: Pietras2001 »

Trójkąt jest równoramienny i co dalej? Od razu można napisać, że największe pole z trójkątów równoramiennych ma trójkąt równoboczny?
piasek101
Użytkownik
Użytkownik
Posty: 23496
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski
Podziękował: 1 raz
Pomógł: 3264 razy

maksymalne pole

Post autor: piasek101 »

Pole trójkąta składa się z sumy pól trzech trójkątów równoramiennych (wg mnie nie musimy wykazywać, że środek okręgu jest wewnątrz trójkąta).
Pola tych trzech ze wzoru na iloczyn boków i sinusa kąta między nimi (kąty razem to pełny).
Zająłbym się tą sumą zależną w zasadzie od dwóch kątów.
a4karo
Użytkownik
Użytkownik
Posty: 22210
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3755 razy

maksymalne pole

Post autor: a4karo »

Gdyby nierównoboczny miał największe pole, to używając tej procedury można by je zwiększyć, nieprawdaż>
Hydra147
Użytkownik
Użytkownik
Posty: 268
Rejestracja: 31 mar 2013, o 20:23
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 1 raz
Pomógł: 82 razy

maksymalne pole

Post autor: Hydra147 »

Prawdaż, ale najpierw trzeba byłoby wiedzieć, że trójkąt o największym polu w ogóle istnieje.
a4karo
Użytkownik
Użytkownik
Posty: 22210
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3755 razy

Re: maksymalne pole

Post autor: a4karo »

Jakiś argument o tym, że funkcja ciągła na zwartym zbiorze bla, bla, bla... to pewnie nie ten poziom?
Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15687
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 196 razy
Pomógł: 5221 razy

Re: maksymalne pole

Post autor: Premislav »

Niech \(\displaystyle{ a,b,c}\) – boki trójkąta, \(\displaystyle{ S}\) – pole trójkąta, wtedy
\(\displaystyle{ S=\frac{abc}{4r}}\), a z drugiej strony odnotujmy, że gdy kąty \(\displaystyle{ \alpha, \ \beta, \gamma}\) leżą naprzeciwko boków \(\displaystyle{ a,b,c}\) odpowiednio, to na mocy twierdzenia sinusów jest \(\displaystyle{ a=2r\sin \alpha, \ b=2r\sin \beta, \ c=2r\sin \gamma}\), czyli
\(\displaystyle{ S=2r^2\sin \alpha\sin \beta\sin \gamma=r^2\left(\cos\left( \alpha-\beta\right)-\cos(\alpha+\beta) \right) \sin \gamma\le r^2\left( 1-\cos(\alpha+\beta)\right)\sin \gamma=\\=r^2(1+\cos \gamma)\sin \gamma=4r^2\cos^3\left( \frac{\gamma}{2}\right)\sin\left( \frac{\gamma}{2}\right)=\\=4r^2\left( \cos^6\left( \frac{\gamma}{2}\right) \left( 1-\cos^2\left( \frac{\gamma}{2}\right) \right) \right)^{\frac 1 2}}\)
i odnotujmy, że z nierówności między średnią arytmetyczną a geometryczną dla \(\displaystyle{ 4}\) zmiennych:
\(\displaystyle{ \left( \frac 1 3\cos^2\left( \frac{\gamma}{2}\right) \right)^3\left( 1-\cos^2\left( \frac{\gamma}{2}\right) \right) \le \left(\frac{1-\cos^2\left( \frac{\gamma}{2}\right)+3\cdot \frac 1 3\cos^2\left( \frac{\gamma}{2}\right) }{4} \right)^4=\frac{1}{256}}\),
a stąd
\(\displaystyle{ S\le \frac{3\sqrt{3}}{4}r^2}\) i równość zajdzie gdy jednocześnie \(\displaystyle{ \alpha=\beta}\) oraz
\(\displaystyle{ 1-\cos^2\left( \frac{\gamma}{2}\right) =\frac{1}{3}\cos^2\left( \frac{\gamma}{2}\right)}\), a stąd, z uwagi na dodatniość \(\displaystyle{ \cos\left( \frac{\gamma}{2}\right)}\) dostajemy
\(\displaystyle{ \cos\left( \frac{\gamma}{2}\right)=\frac{\sqrt{3}}{2}}\), czyli \(\displaystyle{ \frac{\gamma}{2}=\frac{\pi}{6}}\), a więc \(\displaystyle{ \alpha=\beta, \ \gamma=\frac{\pi}{3}}\), czyli \(\displaystyle{ \alpha=\beta=\gamma=\frac{\pi}{3}}\). Zatem największe pole ma trójkąt równoboczny.-- 11 kwi 2019, o 22:41 --BTW Nie wiem, jak Wy widzicie takie argumenty geometryczne, to chyba trzeba mieć jakiś dar. Dla mnie szczyt finezji geometrycznej to dorysowanie wysokości.
ODPOWIEDZ