Pomoc w zadaniu

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
Zirconium
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 3 wrz 2019, o 20:02
Płeć: Mężczyzna

Pomoc w zadaniu

Post autor: Zirconium » 3 wrz 2019, o 21:27

Dobry wieczór. Pragnę załatać braki w mojej wiedzy dotyczace przekształcania funkcji z postaci ogólnej na iloczynową. Przekształcenia wyrażenia \(\displaystyle{ 9x^2+6x+1}\) i rozbicia go na dwa nawiasy najprościej dokonam po odwrócenia wzoru skróconego mnożenia na kwadrat sumy, aczkolwiek z mojego obecnego przekonania powinno być to możliwe również wyliczając delte. Oczywiście jestem w błędzie a zatosowanie drugiej metody skutkuje otrzymaniem wyniku \(\displaystyle{ (x+1/3)^2}\) Bardzo proszę o wytłumaczenie w jakich przypadkach i dlaczego stosowanie delty w zamianie postaci ogólnej na iloczynową jest niepoprawne. Z góry dziękuję i przepraszam za niekompetencje.

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 14212
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 67 razy
Pomógł: 4658 razy

Re: Pomoc w zadaniu

Post autor: Premislav » 3 wrz 2019, o 21:44

Oczywiście, że zastosowanie delty da poprawny rezultat. Problem w tym, że powyżej gubisz współczynnik wiodący (czyli współczynnik przy \(\displaystyle{ x^2}\)). Trójmian kwadratowy \(\displaystyle{ ax^2+bx+c}\), gdzie \(\displaystyle{ a\neq 0, \ b^2-4ac\ge 0}\) ma postać kanoniczną
\(\displaystyle{ a(x-x_1)(x-x_2)}\), gdzie \(\displaystyle{ x_1, x_2}\) to jego pierwiastki, nie zaś po prostu \(\displaystyle{ (x-x_1)(x-x_2)}\).
Tutaj jest \(\displaystyle{ a=9}\) i otrzymujesz postać \(\displaystyle{ 9x^2+6x+1=9\left(x+\frac 1 3\right)^2}\)

Zirconium
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 3 wrz 2019, o 20:02
Płeć: Mężczyzna

Re: Pomoc w zadaniu

Post autor: Zirconium » 4 wrz 2019, o 18:39

Bardzo dziękuję za wyjaśnienie.

ODPOWIEDZ