(3 zadania) Rozwiąż układy równań

Zagadnienia dot. funkcji liniowych. RÓWNANIA I NIERÓWNOŚCI 1. stopnia. Układy równań i nierówności liniowych.
truskafka
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 11 sie 2004, o 08:24
Lokalizacja: osw

(3 zadania) Rozwiąż układy równań

Post autor: truskafka » 11 sie 2004, o 08:57

Może ktoś sobie poradzi z tymi układami:

1: x*y=x^2*y^2
3(x^2*y+x*y^2)=5(x-y)

2: x^2+3xy=54
xy+4y^2=115

3: x^3-y^3=19(x-y)
x^3+y^3=7(x+y)

4: x(x+y)=3
x(x+z)=1
x(y+z)=2
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Arek
Gość Specjalny
Gość Specjalny
Posty: 1729
Rejestracja: 9 sie 2004, o 19:04
Płeć: Mężczyzna
Lokalizacja: Koszalin
Podziękował: 2 razy
Pomógł: 12 razy

(3 zadania) Rozwiąż układy równań

Post autor: Arek » 11 sie 2004, o 10:07

Na przyszłość pisz w jakim zbiorze te układy...


OK - zacznijmy od końca:

Zad. 4

x0 - bez komentarza...

(1) x(x+y)=3
(2) x(x+z)=1
(3) x(y+z)=2

Z (1), (2): 3(x+z)=x+y, a stąd 2x+3z=y
Z (2), (3): 2(x+z)=y+z, a stąd 2x+z=y

Po odjęciu stronami: 2z=0, a stąd z=0

Po wstawieniu tego wyniku do 2: x^2=1, czyli x=1 "v" x=-1

W pierwsym przypadku: (x,y,z)=(1,2,0)
W drugim: (x,y,z)=(-1,-2,0)

I to wszystko...

A teraz początek , Zad 1

Z xy=x^2*y^2, mamy:

0=xy(xy-1), czyli

(1) xy=0 "v" (2) xy=1

(1) W drugim równaniu podstawiamy xy=0, stąd x-y=0, stąd x=y. Skoro xy=0, to co najmniej jedna z x, y jest 0, ale skoro są równe, to (x,y)=(0,0)

(2) 3(x+y)=5(x-y), czyli 8y=2x a z warunku pierwszego, x0, y0. Zatem niech x=1/y. Postawmy: 4y=1/y, a stąd 4y^2=1, a stąd y^2=1/4.
Mamy więc
(2.1) y=1/2 lub
(2.2) y=-1/2

(2.1) (x,y)=(2,1/2)
(2.2) (x,y)=(-2,-1/2)

Zatem 3 rozwiązania, to:

(x,y)=(0,0) "v" (x,y)=(2,1/2) "v" (x,y)=(-2,-1/2)

Zad 2

Proponuję najpierw wyznaczyć:

(1) x^2+3xy=54 skąd x(x+3y)=54
(2) xy+4y^2=115 skąd y(x+4y)=115

Stąd x0, y0

Stąd otrzymujemy równość:

54/x+y=115/y, a po mnożenu przez xy, mamy: y(54+x)=115x

Skoro x0, y0, to 54+x0, a stąd y=115x/54+x

Po podstawieniu: x^2(1+345/54+x)=54
Czyli otrzymujemy jakieś równanie 3 stopnia do rozwiązania.
Może ktoś zechce mi pomóc je rozwiązać...
Ale... metodę widać.

Ciekawe, że Reksio podpowiada drugi pomysł, że po dodaniu (1), (2) stronami, mamy: (x+2y)^2=169. To jest dobry pomysł...

Stąd bowiem (a) x+2y=13 "v" (b) x+2y=-13,

(a) (13-2y)(13+y)=54, czyli 169-13y+2y^2=0, czyli:

delta to 169 - 4(169*2), czyli delta

truskafka
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 11 sie 2004, o 08:24
Lokalizacja: osw

(3 zadania) Rozwiąż układy równań

Post autor: truskafka » 11 sie 2004, o 20:22

och, jakiś ty mądry, na pewno poradzisz sobie na olimpiadzie

nie pisało w jakim zbiorze te układy

dzięki

Awatar użytkownika
Arek
Gość Specjalny
Gość Specjalny
Posty: 1729
Rejestracja: 9 sie 2004, o 19:04
Płeć: Mężczyzna
Lokalizacja: Koszalin
Podziękował: 2 razy
Pomógł: 12 razy

(3 zadania) Rozwiąż układy równań

Post autor: Arek » 11 sie 2004, o 23:09

Heh, rok temu też tak myślałem... Ale dzięki
Nie ma za co z tymi układami...

Pozdrawiam

ODPOWIEDZ