Rozwiąż układ równań

Zagadnienia dot. funkcji liniowych. RÓWNANIA I NIERÓWNOŚCI 1. stopnia. Układy równań i nierówności liniowych.
160W

Rozwiąż układ równań

Post autor: 160W » 17 lip 2004, o 12:01

Rozwiąż układ równań

\(\displaystyle{ \frac{a_1\cdot (1-q^3)}{1-q} = 39}\)

\(\displaystyle{ \frac{a_1\cdot q^3(1-q^3)}{1-q} = 1053}\)
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Skrzypu
Gość Specjalny
Gość Specjalny
Posty: 1146
Rejestracja: 18 maja 2004, o 22:15
Płeć: Mężczyzna
Lokalizacja: Kraków
Pomógł: 18 razy

Rozwiąż układ równań

Post autor: Skrzypu » 17 lip 2004, o 12:17

Na początku najlepiej przeczytać wątek z oznaczeniami

[a_1(1-q^3)] / (1-q) = 39

[a_1*q^3(1-q^3)] / (1-q) = 1053

z pierwszego wyliczasz a_1 podstawiasz do drugiego redukujesz i ładnie wychodzi

a_1 = [39*(1-q)] / (1-q^3)

{[39*(1-q)] / (1-q^3) * q^3(1-q^3)} / (1-q) = 1053

q^3 = 27

q^3=3^3

q=3

ODPOWIEDZ