Układ równań z wartością bezwzględną

Zagadnienia dot. funkcji liniowych. RÓWNANIA I NIERÓWNOŚCI 1. stopnia. Układy równań i nierówności liniowych.
nearless
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 16 paź 2017, o 17:34
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 4 razy

Układ równań z wartością bezwzględną

Post autor: nearless » 17 mar 2018, o 14:27

\(\displaystyle{ \begin{cases} 2|x-2|+3|y+1|=4\\2x-y=3\end{cases}}\)
Dla \(\displaystyle{ x>0}\) i \(\displaystyle{ y>0}\) wychodzi \(\displaystyle{ x= \frac{14}{8} = 1 \frac{3}{4}}\) i \(\displaystyle{ y= \frac{1}{2}}\) ale z żadną z 2-ch odpowiedzi się nie zgadza. Co jest źle? :/
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Jan Kraszewski
Administrator
Administrator
Posty: 26422
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4422 razy

Re: Układ równań z wartością bezwzględną

Post autor: Jan Kraszewski » 17 mar 2018, o 14:38

Zapewne rozwiązanie... Pokaż je, to sprawdzimy.

JK

nearless
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 16 paź 2017, o 17:34
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 4 razy

Re: Układ równań z wartością bezwzględną

Post autor: nearless » 17 mar 2018, o 17:07

ęc
\(\displaystyle{ \begin{cases} 2x-4+3y+3=4 \\y=2x-3\end{cases}}\)
Czyli
\(\displaystyle{ \begin{cases}2x+3y=5 \\y=2x-3\end{cases}}\)
\(\displaystyle{ \begin{cases}2x+3(2x-3)=5 \\y=2x-3\end{cases}}\)
\(\displaystyle{ \begin{cases}8x-9=5 \\y=2x-3\end{cases}}\)
\(\displaystyle{ \begin{cases}8x=14 \\y=2x-3\end{cases}}\)
Stąd \(\displaystyle{ x= \frac {14}{8}}\)

a4karo
Użytkownik
Użytkownik
Posty: 18142
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 5 razy
Pomógł: 3061 razy

Re: Układ równań z wartością bezwzględną

Post autor: a4karo » 17 mar 2018, o 19:07

A jaki związek ma to, co rozwiązałeś z wyjściowym układem?
Wydaje się, że nie rozumiesz czym jest wartość bezwzględna. Wróć do definicji...

nearless
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 16 paź 2017, o 17:34
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 4 razy

Re: Układ równań z wartością bezwzględną

Post autor: nearless » 17 mar 2018, o 19:34

a4karo pisze:A jaki związek ma to, co rozwiązałeś z wyjściowym układem?
Wydaje się, że nie rozumiesz czym jest wartość bezwzględna. Wróć do definicji...
Cóż, z tego, czego nauczyłem się na tym forum, to jeżeli jest \(\displaystyle{ |x|}\) i \(\displaystyle{ |y|}\) to rozwiązujemy układ równań z czterema założeniami tzn. \(\displaystyle{ x>0}\) i \(\displaystyle{ y>0}\)
\(\displaystyle{ x>0}\) i \(\displaystyle{ y<0}\)
\(\displaystyle{ x<0}\) i \(\displaystyle{ y>0}\)
\(\displaystyle{ x<0}\) i \(\displaystyle{ y<0}\)
Gdy robiłem \(\displaystyle{ 10~}\) innych przykładów, to wychodziło, więc... cóż, w takim razie nadal nie umiem i nie rozumiem, co jest tutaj złego. Bo związek wg. mnie ma, skoro przyjmujemy, że \(\displaystyle{ x>0}\) i \(\displaystyle{ y>0}\) to opuszczamy wartość bezwzględną i tyle.

edit. oczywiście ma być większe lub równe.

a4karo
Użytkownik
Użytkownik
Posty: 18142
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 5 razy
Pomógł: 3061 razy

Re: Układ równań z wartością bezwzględną

Post autor: a4karo » 17 mar 2018, o 20:30

To jest ok. Tyle że niewłaściwie to wykorzystales.
Przecież w zadaniu nie masz \(\displaystyle{ |x|}\), tylko \(\displaystyle{ |x-2|}\). Widzisz różnicę?

nearless
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 16 paź 2017, o 17:34
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 4 razy

Re: Układ równań z wartością bezwzględną

Post autor: nearless » 17 mar 2018, o 20:50

Faktycznie... Mój głupi błąd którego nie widziałem... Teraz się zgadza, dzięki

ODPOWIEDZ