wyznaczanie ekstremum - sprawdzenie zadania

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
sheiden
Użytkownik
Użytkownik
Posty: 23
Rejestracja: 12 lis 2011, o 17:02
Płeć: Kobieta
Lokalizacja: Gliwice
Podziękował: 2 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: sheiden » 9 sty 2012, o 14:45

czy mógłby mi ktoś sprawdzić to zadanie i napisać ewentualnie, gdzie popełniłam błąd (coś źle zapisane, źle obliczone, każda najmniejsza pomyłka)?

wyznaczyć dziedzinę i ekstrema funkcji \(\displaystyle{ f(x)=x^{3}-3x^{2}+2}\)

dziedzina funkcji: \(\displaystyle{ Df: x \in R}\)

WKE: obliczyłam pochodną:
\(\displaystyle{ \\ f'(x)=3x^{2}-6x \\ f'(x)=0 \Leftrightarrow 3x(x-6)=0 \Leftrightarrow x=0 \vee x=6}\)

WWE: wyznaczam przedziały
\(\displaystyle{ \\ x \in (- \infty , 0), (0, 6), (6, + \infty ) \\ f'(-2)=-60 <0 \ dla \ x \in (- \infty , 0) \\ f'(2)=-24 <0 \ dla \ x \in (0, 6) \\ f'(7)=7 >0 \ dla \ x \in (6, + \infty)}\)

w punkcie \(\displaystyle{ x=6}\) funkcja zmienia znak z \(\displaystyle{ -}\) na \(\displaystyle{ +}\), czyli ma w tym punkcie minimum lokalne, natomiast w punkcie \(\displaystyle{ x=0}\) funkcja nie ma ekstremów bo nie zmienia znaku.

czy to o to chodzi w wyznaczaniu ekstremów?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

demka
Użytkownik
Użytkownik
Posty: 133
Rejestracja: 7 cze 2009, o 12:49
Płeć: Kobieta
Podziękował: 4 razy
Pomógł: 11 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: demka » 9 sty 2012, o 15:12

o przy tym ...
WKE: obliczyłam pochodną:
\(\displaystyle{ 3x(x-2)=0}\)
bo 3 wyłączone jest przed nawias
to tam sie cos zmieni

sheiden
Użytkownik
Użytkownik
Posty: 23
Rejestracja: 12 lis 2011, o 17:02
Płeć: Kobieta
Lokalizacja: Gliwice
Podziękował: 2 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: sheiden » 9 sty 2012, o 15:18

czyli ekstremum będzie w punkcie \(\displaystyle{ x=2}\) a nie 6, tak?

i jeszcze mam pytanie, czy jeżeli WKE jest spełniony, a w WWE w żadnym punkcie funkcja znaku nie zmienia, to wtedy ona nie ma żadnego ekstremum?

demka
Użytkownik
Użytkownik
Posty: 133
Rejestracja: 7 cze 2009, o 12:49
Płeć: Kobieta
Podziękował: 4 razy
Pomógł: 11 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: demka » 9 sty 2012, o 15:24

tak ekstremum bedzie w x = 2

nie bardzo rozumiem o co Ci chodzi z tym drugim pytaniem

jeśli pochodna funkcji sie zeruje to w tym punkcie posiada ona ekstremum (min lub max)
czasem trzeba sprawdzac punkty bardzo bliskie ekstremum - czyli gdy np. ekstremum jest w x = 2 to nalezy sprawdzić np. 1,9
o to chodzilo czy cos innego?

sheiden
Użytkownik
Użytkownik
Posty: 23
Rejestracja: 12 lis 2011, o 17:02
Płeć: Kobieta
Lokalizacja: Gliwice
Podziękował: 2 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: sheiden » 9 sty 2012, o 16:16

miałam przykład \(\displaystyle{ f(x)=x+\arctan x}\) i wyszło mi \(\displaystyle{ f'(x)=0 \Leftrightarrow x=2 \vee x=-2}\)

wyznaczyłam sobie przedziały i sprawdzałam funkcję przy sąsiednich liczbach tych przedziałów (czyli -3, 1 i 3) i wszystkie wyszły większe od zera. no i ... nie wiem co dalej, przy czym w odpowiedziach mojej książki pisze że funkcja nie ma ekstremów. tyle że ona się często myli więc wolę jeszcze pytać, gdy nie jestem pewna...
Ostatnio zmieniony 9 sty 2012, o 17:21 przez Chromosom, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

demka
Użytkownik
Użytkownik
Posty: 133
Rejestracja: 7 cze 2009, o 12:49
Płeć: Kobieta
Podziękował: 4 razy
Pomógł: 11 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: demka » 9 sty 2012, o 16:33

na ta chwile nie pamietam jak to jest - pozniej to sprawdze
bo tam masz funkcje arctg i na to trzeba popatrzec
kolo 21 odpowiem bo teraz sorry ale nie mam juz czasu

sheiden
Użytkownik
Użytkownik
Posty: 23
Rejestracja: 12 lis 2011, o 17:02
Płeć: Kobieta
Lokalizacja: Gliwice
Podziękował: 2 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: sheiden » 9 sty 2012, o 16:54

ok poczekam, i dziekuje za pomoc

Chromosom
Moderator
Moderator
Posty: 10362
Rejestracja: 12 kwie 2008, o 21:08
Płeć: Mężczyzna
Podziękował: 127 razy
Pomógł: 1269 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: Chromosom » 9 sty 2012, o 17:27

sheiden, miejsca zerowe pochodnej funkcji \(\displaystyle{ f(x)=x+\arctan x}\) zostały błędnie wyznaczone - zamieść swoje obliczenia.

Wystarczy sprawdzić znak drugiej pochodnej w punkcie podejrzanym o istnienie ekstremum. Alternatywną metodą jest badanie przedziałów monotoniczności - jeśli na prawo od miejsca zerowego pochodnej funkcja jest malejąca, a na lewo rosnąca, wtedy ekstremum istnieje i jest to maksimum. Analogiczne wnioskowanie proszę przeprowadzić dla odwrotnego przypadku. Gdy po obu stronach miejsca zerowego pochodnej funkcja ma tę samą monotoniczność, czyli jest malejąca lub rosnąca, ekstremum nie istnieje. Wtedy mamy do czynienia z punktem przegięcia, ale to jest następny etap nauki.

demka
Użytkownik
Użytkownik
Posty: 133
Rejestracja: 7 cze 2009, o 12:49
Płeć: Kobieta
Podziękował: 4 razy
Pomógł: 11 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: demka » 9 sty 2012, o 21:27

rozumiesz co zostalo juz napisane czy inaczej trzeba??

sheiden
Użytkownik
Użytkownik
Posty: 23
Rejestracja: 12 lis 2011, o 17:02
Płeć: Kobieta
Lokalizacja: Gliwice
Podziękował: 2 razy

wyznaczanie ekstremum - sprawdzenie zadania

Post autor: sheiden » 9 sty 2012, o 23:09

tak, mniej więcej rozumiem, jeszcze szkoda że mam problem z zastosowaniem tego w praktyce. punkty przegięcia to już też etap nauki, który powinnam rozumieć bo w sumie już cały przebieg zmienności funkcji przerobiliśmy. dziękuję za pomoc

ODPOWIEDZ