Ciągi - monotoniczność

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
michcio95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 18 kwie 2011, o 08:08
Płeć: Mężczyzna
Lokalizacja: Gdansk.
Podziękował: 18 razy
Pomógł: 1 raz

Ciągi - monotoniczność

Post autor: michcio95 » 9 wrz 2012, o 19:55

1. Funkcja \(\displaystyle{ f: R \rightarrow R}\) jest f. malejącą. Sprawdź monotoniczność ciągu \(\displaystyle{ a_{n}}\) jeżeli jego wyraz ogólny ma postać \(\displaystyle{ a_{n}=f(2n-1)}\)
2. Zbadaj monotoniczność ciągu o wyrazie ogólnym \(\displaystyle{ a_{n}= \frac{2n+7}{21-n^{2}}}\)

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18811
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 6 razy
Pomógł: 3746 razy

Ciągi - monotoniczność

Post autor: szw1710 » 9 wrz 2012, o 19:57

1. Zbadaj monotoniczność ciągu o wyrazie ogólnym \(\displaystyle{ 2n-1}\) i zastosuj definicję funkcji malejącej.

2. Sprawdź znak wyrażenia \(\displaystyle{ a_{n+1}-a_n.}\)

michcio95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 18 kwie 2011, o 08:08
Płeć: Mężczyzna
Lokalizacja: Gdansk.
Podziękował: 18 razy
Pomógł: 1 raz

Ciągi - monotoniczność

Post autor: michcio95 » 9 wrz 2012, o 20:19

2. To ja wiem... Ale co jak mi coś dziwnego wychodzi?
1. Monotonicznosc tego ciagu wskazuje na to ze ciag 2n-1 jest rosnacy. I jak mam to przelozyc na funkcje?

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18811
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 6 razy
Pomógł: 3746 razy

Ciągi - monotoniczność

Post autor: szw1710 » 9 wrz 2012, o 21:20

2. No to pokaż, co Ci wychodzi.

1. Stosując definicję funkcji malejącej. Zapisz ją sobie i zastosuj do naszego ciągu. Sprawdź, jaka jest nierówność pomiędzy \(\displaystyle{ a_{n+1},}\) a \(\displaystyle{ a_n.}\)

michcio95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 18 kwie 2011, o 08:08
Płeć: Mężczyzna
Lokalizacja: Gdansk.
Podziękował: 18 razy
Pomógł: 1 raz

Ciągi - monotoniczność

Post autor: michcio95 » 9 wrz 2012, o 21:48

Mozesz mi napisać rozwiazanie bo twoje wskazowki mi wogole nie pomagaja (do pkt 1) ...

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18811
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 6 razy
Pomógł: 3746 razy

Ciągi - monotoniczność

Post autor: szw1710 » 9 wrz 2012, o 21:49

Nie mogę - to jest najłatwiejsze. Pokaż Twoje wysiłki, co w ogóle zrobiłeś i jak.

michcio95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 18 kwie 2011, o 08:08
Płeć: Mężczyzna
Lokalizacja: Gdansk.
Podziękował: 18 razy
Pomógł: 1 raz

Ciągi - monotoniczność

Post autor: michcio95 » 9 wrz 2012, o 21:50

Drugie mi wychodzi

\(\displaystyle{ \frac{2n+9}{20-n^{2}-2n} - \frac{2n+7}{21-n^{2}}}\) I CO DALEJ?

Funckaj jest malejaca jeżeli \(\displaystyle{ x_{1} < x_{2}}\) to \(\displaystyle{ f(x_{1}) > f(x_{2})}\)

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18811
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 6 razy
Pomógł: 3746 razy

Ciągi - monotoniczność

Post autor: szw1710 » 9 wrz 2012, o 21:53

Tak.

2. Przekształć to do "najprostszej postaci" i zbadaj znak.

1. Wstaw \(\displaystyle{ x_1=2n-1,\;x_2=2(n+1)-1=2n+1.}\) Czy można stąd coś wywnioskować?

michcio95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 18 kwie 2011, o 08:08
Płeć: Mężczyzna
Lokalizacja: Gdansk.
Podziękował: 18 razy
Pomógł: 1 raz

Ciągi - monotoniczność

Post autor: michcio95 » 9 wrz 2012, o 21:58

\(\displaystyle{ x_{1} - x_{2} = -2}\) Nie wiem co dalej...
1. Da się sprytniej zrobić niż mnożyć i się męczyć w rachunkach (spro. do wspólnego mianownika)

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18811
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 6 razy
Pomógł: 3746 razy

Ciągi - monotoniczność

Post autor: szw1710 » 9 wrz 2012, o 22:16

1. To stwierdzenie czy pytanie? Jeśli pytanie, to powiem to co maja mama: kto drogi prostuje, ten w domu nie nocuje

2. Nie tędy droga. Jaka jest relacja pomiędzy \(\displaystyle{ f(x_1)}\) a \(\displaystyle{ f(x_2)}\)? Zastosuj definicję funkcji malejącej i informację, że \(\displaystyle{ x_1<x_2.}\) Potem przełóż to na oznaczenia \(\displaystyle{ a_n}\) oraz \(\displaystyle{ a_{n+1}}\). Jaśniej już nie potrafię.

michcio95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 18 kwie 2011, o 08:08
Płeć: Mężczyzna
Lokalizacja: Gdansk.
Podziękował: 18 razy
Pomógł: 1 raz

Ciągi - monotoniczność

Post autor: michcio95 » 9 wrz 2012, o 22:19

Dobra , nic nie rozumiem z tego co pisałeś, nic mi nie pomogłeś =.=
"Dziękuję". Ile punktów ""Pomógł"" chcesz?

facepalm

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18811
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn
Podziękował: 6 razy
Pomógł: 3746 razy

Ciągi - monotoniczność

Post autor: szw1710 » 9 wrz 2012, o 22:54

Poziom Twoich wypowiedzi nie świadczy o klasie mojej pomocy. Sam siebie, dziecko, obrażasz.

michcio95
Użytkownik
Użytkownik
Posty: 46
Rejestracja: 18 kwie 2011, o 08:08
Płeć: Mężczyzna
Lokalizacja: Gdansk.
Podziękował: 18 razy
Pomógł: 1 raz

Ciągi - monotoniczność

Post autor: michcio95 » 9 wrz 2012, o 22:59

Chlopie bo mi nie pomagasz, nic z twoich wypowiedzi nie rozumiem, bo dla ciebie to wielki problem napisac rozwiazanie ktore by ci zajelo 30 sekund. zal.pl

krejzilejdi
Użytkownik
Użytkownik
Posty: 9
Rejestracja: 31 sie 2012, o 18:52
Płeć: Kobieta
Lokalizacja: Rzeszów
Pomógł: 2 razy

Ciągi - monotoniczność

Post autor: krejzilejdi » 9 wrz 2012, o 23:21

ciąg \(\displaystyle{ b_{n}=2n-1}\) jest rosnący, bo \(\displaystyle{ b_{n+1}=2n+1}\) , czyli \(\displaystyle{ b_{n+1}-b_{n}=2}\), a funkcja f jest malejąca, więc im dajemy większy x tym mniejsza wartość f(x), więc ostatecznie ciąg \(\displaystyle{ a_{n}=f(b_{n})}\) jest malejący. Nie wiem, czy o takie wytłumaczenie chodziło.

ODPOWIEDZ