Wprowadzenie tożsamości analizy wariancji

Procesy stochastyczne. Sposoby racjonalizowania wielkich ilości informacji. Matematyka w naukach społecznych.
Tomasz22
Użytkownik
Użytkownik
Posty: 66
Rejestracja: 23 mar 2022, o 22:52
Płeć: Mężczyzna
wiek: 22

Wprowadzenie tożsamości analizy wariancji

Post autor: Tomasz22 »

Wie ktoś może jak uzasadnić równość tego, co jest zaznaczone w kółeczkach i wyprowadzić tożsamość analizy wariancji? Zadanie pochodzi ze statystyki a konkretniej z rozdziału dotyczącego metody najmniejszych kwadratów.

EDIT: Przepraszam najmocniej, pod koniec pierwszej linijki, w pierwszym nawiasie po znaku sumy powinno być oczywiście Y_t z daszkiem odjąć średnia z Y.
Załączniki
FB_IMG_1673551134297.jpg
janusz47
Użytkownik
Użytkownik
Posty: 7920
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 30 razy
Pomógł: 1671 razy

Re: Wprowadzenie tożsamości analizy wariancji

Post autor: janusz47 »

Dla uproszczenia przeprowadzamy ANOVA dla próby \(\displaystyle{ n - }\) elementowej:

\(\displaystyle{ \vec{Y} = [Y_{1}, Y_{2},..., Y_{n}], \ \ Y_{i} \sim \mathcal{N}(\mu_{i}, \sigma^2), \ \ \mu_{i} \in \RR, \ \ \sigma>0. }\)

Weryfikujemy hipotezy:

\(\displaystyle{ H_{0} : \mu_{1}= \mu_{2}= \ \ ... =\mu_{n} = \mu }\) (nieznane),

\(\displaystyle{ H_{1}: \mu_{1} \neq \mu_{2} \neq \ \ ... \ \ \neq\mu_{n}\neq \mu.}\)

Konstruujemy funkcję wiarygodności:

\(\displaystyle{ L(\mu, \sigma, y_{1}, y_{2}, ...,y_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi} \sigma} \exp \left(\frac{-(y_{i}-\mu)^2}{2\sigma^2}\right) =\frac{1}{(\sqrt{2\pi} \sigma)^{n}} \exp \left( -\frac{1}{2\sigma^2}\sum_{i=1}^{n}(y_{i}- \mu)^2\right).}\)

Obliczamy logarytm naturalny funkcji wiarygodności.

\(\displaystyle{ \ln(L) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_{i} - \mu)^2 -\frac{n}{2}\ln(\sigma^2)- \frac{n}{2}\ln(2\pi).}\)

Obliczamy pochodne cząstkowe funkcji \(\displaystyle{ \ln L.}\)

\(\displaystyle{ \begin{cases} \frac{ \partial \ln L}{ \partial \mu} = \frac{1}{\sigma^2}\sum_{i=1}^{n}(y_{i}-\mu)= 0 \\ \frac{ \partial \ln L}{ \partial \sigma^2} = \frac{1}{2\sigma^4} \sum_{i=1}^{n}(y_{i}-\mu)^2 = 0 \end{cases} }\)

Rozwiązanie układu równań wiarygodności ma postać:

\(\displaystyle{ \hat{\mu} = \frac{1}{n}\sum_{i=1}^{n} y_{i} = \overline{y}, \ \ \hat{\sigma}^2 = \frac{1}{n}\sum_{i=1}^{n}(y_{i}- \overline{y})^2.}\)


Dla dokładności należałoby jeszcze sprawdzić, że dla tych wartości funkcja wiarygodności osiąga maksimum lokalne.

Nie będziemy przeprowadzać tego sprawdzenia zakładając, że tak jest.

Z rozwiązania układu równań otrzymaliśmy dwa estymatory ANOVA:

\(\displaystyle{ \hat{Y} = \overline{Y}, \ \ \hat{S}^2 = S^2. }\)

O jaką tożsamość analizy wariancji Pan chodzi ?
Tomasz22
Użytkownik
Użytkownik
Posty: 66
Rejestracja: 23 mar 2022, o 22:52
Płeć: Mężczyzna
wiek: 22

Re: Wprowadzenie tożsamości analizy wariancji

Post autor: Tomasz22 »

O równanie (18) :)
ODPOWIEDZ