Znaleziono 3367 wyników

autor: mortan517
25 mar 2012, o 22:24
Forum: Konkursy lokalne
Temat: XII Podkarpacki Konkurs Matematyczny (rejon)
Odpowiedzi: 29
Odsłony: 4547

XII Podkarpacki Konkurs Matematyczny (rejon)

Mógłby ktoś napisać rozwiązania do zadań z poziomu pierwszego? Wielkie dzięki -- 29 mar 2012, o 16:06 --wiem, że możecie nie mieć czasu i te sprawy, ale jakby ktoś znalazł chwilkę to proszę o rozwiązania tych 2/5 zadań, które widnieją powyżej już (to jest pierwszy poziom / etap rejonowy) 2. Oblicz w...
autor: mortan517
18 sty 2012, o 16:37
Forum: Przekształcenia algebraiczne
Temat: Liczba ... jest równa.
Odpowiedzi: 5
Odsłony: 221

Liczba ... jest równa.

Gość nie wie co i jak, a wy nie chcecie mu pomóc -.- \frac{1}{1 - \sqrt{2} } = \frac{1}{1 - \sqrt{2} } \cdot \frac{1 + \sqrt{2} }{1 + \sqrt{2} } z wzorów skróconego mnożenia wiemy, że \left( a - b\right) \cdot \left( a + b\right) = a ^{2} - b ^{2} , więc \frac{1}{1 - \sqrt{2} } = \frac{1}{1 - \sqrt{...
autor: mortan517
13 lis 2011, o 19:34
Forum: Wartość bezwzględna
Temat: Liczby rzeczywiste
Odpowiedzi: 7
Odsłony: 1505

Liczby rzeczywiste

1c
zapisujemy liczbę parzystą i nieparzystą w postaci ogólnej tj.
\(\displaystyle{ 2n + 2n+1}\)
\(\displaystyle{ 4n + 1 = 2 \cdot 2 + 1}\)
a taki wzór \(\displaystyle{ (2n+1)}\) ma liczba nieparzysta
autor: mortan517
13 lis 2011, o 19:23
Forum: Wartość bezwzględna
Temat: Rozwiązanie nierówności.
Odpowiedzi: 3
Odsłony: 248

Rozwiązanie nierówności.

więc tak... jeśli omijasz kreski wartości bezwzględnej musisz w drugim przypadku zmienić znak na przeciwny.. czyli będzie

1)
\(\displaystyle{ |x|>2}\)
\(\displaystyle{ x>2 \vee x<-2}\)

2)
\(\displaystyle{ |3x-1|>2}\)

\(\displaystyle{ 3x-1>2 \vee 3x-1<-2}\)

\(\displaystyle{ 3x>3 \vee 3x<-2+1}\)

\(\displaystyle{ x>1 \vee x<-\frac{1}{3}}\)

pozdrawiam
autor: mortan517
9 lis 2011, o 21:06
Forum: Przekształcenia algebraiczne
Temat: notacja wykladnicza
Odpowiedzi: 7
Odsłony: 358

notacja wykladnicza

Mam nadzieję, że pomogłem
Rozwiązanie zadania:    
autor: mortan517
9 lis 2011, o 19:43
Forum: Wartość bezwzględna
Temat: Obliczanie dzielenia wartości bezwzględnej.
Odpowiedzi: 2
Odsłony: 379

Obliczanie dzielenia wartości bezwzględnej.

Tutaj masz rozwiązanie dwoma sposobami. \left\frac{|1-\sqrt{2}|}{|1+\sqrt{2}|}\right= \left\frac{|(1-\sqrt{2})(1-\sqrt{2})|}{|(1+\sqrt{2})(1-\sqrt{2})|}\right= \left\frac{|1-2\sqrt{2}+2|}{|1-2|}\right= \left\frac{|3-2\sqrt{2}|}{|-1|}\right= \left|3-2\sqrt{2}\right|= 3-2\sqrt{2} >Takie rozwiązanie al...
autor: mortan517
6 lis 2011, o 15:49
Forum: Konkursy lokalne
Temat: XXVII Konkurs Matematyczny im. Prof. J. Marszała
Odpowiedzi: 40
Odsłony: 6312

XXVII Konkurs Matematyczny im. Prof. J. Marszała

Mógłby ktoś napisać rozwiązania do dwóch pozostałych zadań (klasa 1)? Zad.1. Podaj z uzasadnieniem liczbę elementów zbioru zawierającego trójkąty prostokątne, których długości boków wyrażone są liczbami pierwszymi. Zad.3. Na bokach AD i BC równoległoboku ABCD zaznaczono punkty M i K tak, że |AM|=|CK...