Znaleziono 406 wyników

autor: Alef
29 mar 2018, o 09:41
Forum: Prawdopodobieństwo
Temat: Miara martyngałowa- proces Wienera
Odpowiedzi: 1
Odsłony: 336

Re: Miara martyngałowa- proces Wienera

\(\displaystyle{ N\left( \frac{\mu-r}{\sigma}t, \sqrt{t} \right)}\)
autor: Alef
27 sty 2017, o 19:11
Forum: Prawdopodobieństwo
Temat: warunkowa wartość oczekiwana
Odpowiedzi: 3
Odsłony: 380

warunkowa wartość oczekiwana

1. \(\displaystyle{ \sigma(X^{2}) \subset \sigma(X)}\) - prawda

2. Jak coś jest mierzalne względem większego (czy też "nie mniejszego" - w sensie zawierania) \(\displaystyle{ \sigma}\)-ciała, to względem mniejszego też. - fałsz (na odwrót)

\(\displaystyle{ E[X|X^{2}] \neq X}\)
autor: Alef
18 sty 2017, o 13:48
Forum: Statystyka
Temat: Dla jakich wartości a, proces jest procesem Wienera
Odpowiedzi: 1
Odsłony: 273

Dla jakich wartości a, proces jest procesem Wienera

Sprawdź dla jakich \(\displaystyle{ a}\) przyrosty procesu \(\displaystyle{ (V_{t})_{t \ge 0}}\) (a więc \(\displaystyle{ V_{t}-V_{s}}\) dla dowolnych \(\displaystyle{ t>s \ge 0}\)) mają rozkład normalny \(\displaystyle{ N(0,t-s)}\).
autor: Alef
8 sty 2017, o 10:16
Forum: Rachunek różniczkowy
Temat: Pochodna z arctx
Odpowiedzi: 9
Odsłony: 433

Pochodna z arctx

\(\displaystyle{ \lim_{ x\to0^{+} }\frac{2\ln{(x)}}{\frac{1}{\sin{x}}}=\lim_{ x\to0^{+} }\frac{2\sin^{2}{x}}{-x\cos{x}}=\lim_{ x\to0^{+} }\frac{4\sin{x}\cos{x}}{-\cos{x}+x\sin{x}}=\left[ \frac{0}{-1}\right]=0}\)
autor: Alef
7 sty 2017, o 20:44
Forum: Rachunek różniczkowy
Temat: Zbadać monotoniczność funkcji
Odpowiedzi: 5
Odsłony: 510

Zbadać monotoniczność funkcji

f(x)=\begin{cases} arctg(x)& \text{dla } x \le 0 \\ x^{2}+\frac{1}{\left| x\right| } & \text{dla }x>0\end{cases} Zauważ, że dla x>0 mamy \left| x\right|=x (z definicji wartości bezwzględnej). Zatem Twoja funkcja wygląda tak: f(x)=\begin{cases} arctg(x)& \text{dla } x \le 0 \\ x^{2}+\frac{1}{ x } & ...
autor: Alef
7 sty 2017, o 19:42
Forum: Rachunek różniczkowy
Temat: Zbadać monotoniczność funkcji
Odpowiedzi: 5
Odsłony: 510

Zbadać monotoniczność funkcji

Aby zbadać monotoniczność Twojej funkcji f(x) musisz sprawdzić dla jakich x : a) funkcja f'(x) jest dodatnia (czyli gdzie f'(x)>0 ), bo wówczas funkcja f(x) jest rosnąca. b) funkcja f'(x) jest ujemna (czyli gdzie f'(x)<0 ), bo wówczas funkcja f(x) jest malejąca. Zaczynamy od a). Do rozwiązania masz ...
autor: Alef
7 sty 2017, o 14:43
Forum: Rachunek różniczkowy
Temat: Zbadać monotoniczność funkcji
Odpowiedzi: 5
Odsłony: 510

Zbadać monotoniczność funkcji

\(\displaystyle{ f(x)=x^{2}e^{-x}}\)

\(\displaystyle{ f'(x)=2xe^{-x}-x^{2}e^{-x}=e^{-x}\left( 2x-x^{2}\right)}\)

Teraz łatwiej?
autor: Alef
7 sty 2017, o 14:36
Forum: Granica i ciągłość funkcji
Temat: Wykaż że nastepujace granice funkcji nie istnieją:
Odpowiedzi: 12
Odsłony: 764

Wykaż że nastepujace granice funkcji nie istnieją:

Jeżeli liczysz granicę np. \lim_{ x\to4 } \frac{2}{x(x-4)}=\left[ \frac{2}{4 \cdot (4-4)}\right] =\left[ \frac{2}{0}\right] i w granicy otrzymujesz symbol \left[ \frac{\text{stała różna od 0}}{0}\right] , to musisz obliczyć granice jednostronne i je porównać. W Twoim przypadku trzeba policzyć dwie g...
autor: Alef
30 gru 2016, o 16:43
Forum: Prawdopodobieństwo
Temat: Proces Wienera - kowariancja
Odpowiedzi: 1
Odsłony: 353

Proces Wienera - kowariancja

\(\displaystyle{ E[X_t Y_t]=aE[W_t e^{aW_{t}+b}]+bE[e^{aW_{t}+b}]}\)

I na przykład:

\(\displaystyle{ E[W_t e^{aW_{t}+b}]=E[X e^{aX+b}]=...}\)

gdzie \(\displaystyle{ X\sim N(0,t)}\)

Albo:

\(\displaystyle{ E[X_t Y_t]=E\left[ \left( aW_t+b\right)e^{aW_{t}+b} \right]=E[Xe^{X}]=...}\)

gdzie \(\displaystyle{ X\sim N(b,a^{2}t)}\)
autor: Alef
12 gru 2016, o 08:24
Forum: Prawdopodobieństwo
Temat: jak rozpisac wartość oczekiwaną:
Odpowiedzi: 15
Odsłony: 757

jak rozpisac wartość oczekiwaną:

Moim osobistym zdaniem, na podstawie danych dostępnych w tej dyskusji, nie da się tego zrobić. Dlatego zapytaj swojego wykładowcy/nauczyciela i przedstaw nam jego/jej rozwiązanie.
autor: Alef
11 gru 2016, o 22:11
Forum: Prawdopodobieństwo
Temat: jak rozpisac wartość oczekiwaną:
Odpowiedzi: 15
Odsłony: 757

jak rozpisac wartość oczekiwaną:

1. Czy \(\displaystyle{ -0,08=-0,0800748}\)?

2.
monpor7 pisze: Gdzies też znalazłam twierdzenie, że jesli X i Y są niezależne to zachodzi: \(\displaystyle{ E\left[\frac{1}{Y} \right] = \frac{1}{E[Y]}}\) oraz \(\displaystyle{ E(2^Y)=2^{EY}}\)
Bzdura.

Jedyne co masz to z nierówności Jensena:

\(\displaystyle{ 2^{EY} \le E(2^Y)}\)
autor: Alef
10 gru 2016, o 22:40
Forum: Prawdopodobieństwo
Temat: jak rozpisac wartość oczekiwaną:
Odpowiedzi: 15
Odsłony: 757

jak rozpisac wartość oczekiwaną:

Wzór na kowariancję: Kowariancja U Ciebie: Cov(X,Y)=E[XY]-E[X]E[Y]=0.7-0.6*1.3=-0,08 Wzór na współczynnik korelacji: Korelacja U Ciebie: \frac{Cov(X,Y)}{DXDY}=0,059 czyli Cov(X,Y)=0,059*DX*DY i podstawiając dane Cov(X,Y)=0,0800748 Oznacza to, że dane które masz są sprzeczne. Pozostaje Ci spytać wykł...
autor: Alef
10 gru 2016, o 10:47
Forum: Prawdopodobieństwo
Temat: jak rozpisac wartość oczekiwaną:
Odpowiedzi: 15
Odsłony: 757

jak rozpisac wartość oczekiwaną:

Największy problem w tym zadaniu to że nie znamy jego pełnej treści.

P.S. To twierdzenie, które znalazłaś, zachodzi gdy kreska jest pionowa a nie ukośna
autor: Alef
10 gru 2016, o 08:17
Forum: Prawdopodobieństwo
Temat: jak rozpisac wartość oczekiwaną:
Odpowiedzi: 15
Odsłony: 757

jak rozpisac wartość oczekiwaną:

monpor7 pisze:Tak mam to rozumiec?:

\(\displaystyle{ E \left( \frac{X^2}{Y} \right)=EX^2 : EY}\)?
Nie.

Mamy tylko:

\(\displaystyle{ E \left( \frac{X^2}{Y} \right)=E\left[ X^2\right] *E\left[\frac{1}{Y} \right]}\)

i to o ile \(\displaystyle{ X}\) i \(\displaystyle{ Y}\) - niezależne zmienne losowe.

Uwaga:

\(\displaystyle{ E\left[\frac{1}{Y} \right] \neq \frac{1}{E[Y]}}\)
autor: Alef
30 lis 2016, o 18:14
Forum: Prawdopodobieństwo
Temat: proces ruchu browna
Odpowiedzi: 1
Odsłony: 332

proces ruchu browna

Wzór Ito dla funkcji \(\displaystyle{ h(x,y)=f(x)g(y)}\) i procesu Wienera \(\displaystyle{ B_{t}}\).