Znaleziono 2237 wyników

autor: Piotr Rutkowski
24 lut 2020, o 11:37
Forum: Prawdopodobieństwo
Temat: Populacja w długim okresie
Odpowiedzi: 1
Odsłony: 280

Populacja w długim okresie

Witam, Niech \mathfrak{P}_{i} będzie populacją w okresie i . W każdym okresie do populacji dołącza stała liczba nowych elementów n (może być dostatecznie duże, wielkość nie powinna być istotna dla problemu). W momencie dołączenia do populacji dla każdego nowego elementu losowany jest jego maksymalny...
autor: Piotr Rutkowski
25 maja 2018, o 09:47
Forum: Prawdopodobieństwo
Temat: X,Y i Z są niezależnymi zmiennymi
Odpowiedzi: 3
Odsłony: 494

X,Y i Z są niezależnymi zmiennymi

\(\displaystyle{ P(X<z)=1-e^{-z}}\), a \(\displaystyle{ P(Y\geq z)=1-(1-e^{-z})=e^{-z}}\)
Dodatkowo, są to zdarzenia niezależne, więc prawdopodobieństwo przecięcia dwóch niezależnych zdarzeń to...
Drugi przypadek to oczywiście \(\displaystyle{ X\geq z}\) oraz \(\displaystyle{ Y<z}\)
autor: Piotr Rutkowski
24 maja 2018, o 09:50
Forum: Prawdopodobieństwo
Temat: X,Y i Z są niezależnymi zmiennymi
Odpowiedzi: 3
Odsłony: 494

X,Y i Z są niezależnymi zmiennymi

Plan jest mniej więcej taki: 1) Najpierw zobacz ile wynosi P(min(X,Y)<z<max(X,Y)) dla zadanej liczby 0\leq z \leq 1 na podstawie wzoru na dystrubuantę i założenia o niezależności, bo warunek w nawiasie oznacza dokładnie tyle, że (X<z<Y) lub Y<z<X 2) Na podstawie informacji o rozkładzie jednostajnym ...
autor: Piotr Rutkowski
17 kwie 2018, o 19:57
Forum: Teoria liczb
Temat: Dowód twierdzenia
Odpowiedzi: 4
Odsłony: 629

Dowód twierdzenia

Czy to na pewno jest prawda? Nie ma jakichś ograniczeń? Zdefiniujmy funkcję t=f\cdot g Funkcja ta jest również multiplikatywna. Zauważmy, że dla 2<p\in \mathbb{P} zachodzi h(p)\cdot h(p)=(t(1)+t(p))^{2}=t(1)+2t(p)+t(p^{2}) , ale h(p^{2})=t(1)+t(p)+t(p^{2}) , więc tutaj multiplikatywność h implikuje ...
autor: Piotr Rutkowski
17 kwie 2018, o 08:52
Forum: Kółko matematyczne
Temat: [MIX] Mix matematyczny (34)
Odpowiedzi: 16
Odsłony: 2583

[MIX] Mix matematyczny (34)

Hmm, a czy dla sinusa nie wychodzi bardziej elementarnie? Niech \sin(x)=g(x)+W(x) dla g parzystej funkcji, W wielomianu. Wiemy, że g(x)+W(x)=\sin(x)=-\sin(-x)=-g(-x)-W(-x)=-g(x)-W(-x) , a co za tym idzie g(x)=\frac{-W(x)-W(-x)}{2} , czyli g(x) jest wielomianem, czyli również \sin(x) jako suma wielom...
autor: Piotr Rutkowski
16 kwie 2018, o 16:20
Forum: Kółko matematyczne
Temat: [MIX] Mix matematyczny (34)
Odpowiedzi: 16
Odsłony: 2583

[MIX] Mix matematyczny (34)

2. Badając miejsca zerowe funkcji f(t)=t+\frac{1}{t}-6 łatwo sprowadzić pierwszą nierówność do postaci t=xy\leq 3-2\sqrt{2} , bo wiemy, że x,y<1 , więc nie musimy się przejmować drugim miejscem zerowym. Na podstawie założenia równoważnie xy=1-x-y\leq 3-2\sqrt{2} , lub (x+1)+(y+1)\geq AM-GM\geq 2\sqr...
autor: Piotr Rutkowski
12 kwie 2018, o 09:06
Forum: Teoria miary i całki
Temat: Zbiór miary zero
Odpowiedzi: 21
Odsłony: 1745

Zbiór miary zero

Nie, bo \(\displaystyle{ \mu(p_{m,n})}\) nie zmienia się przy tak zdefiniowanych \(\displaystyle{ p_{m,n}}\)
autor: Piotr Rutkowski
12 kwie 2018, o 08:48
Forum: Teoria miary i całki
Temat: Zbiór miary zero
Odpowiedzi: 21
Odsłony: 1745

Zbiór miary zero

Niech p_{m,n} oznacza odcinek \Bigl(\frac{w_{n}-1}{m2^{n}},\frac{w_{n}+1}{m2^{n}}\Bigr) , wtedy \mu(p_{m,n})=\frac{(w_{n}+1)-(w_{n}-1)}{m2^{n}}=\frac{1}{m2^{n-1}} Z uwagi na definicję P_{m} zachodzi zależność \mu(P_{m})\leq \sum_{n=1}^{\infty}\mu(p_{m,n})=\frac{2}{m} Z uwagi na zakres sumowania szer...
autor: Piotr Rutkowski
11 kwie 2018, o 17:24
Forum: Ciągi i szeregi funkcyjne
Temat: Reprezentacja funkcji okresowej w szeregu
Odpowiedzi: 2
Odsłony: 559

Reprezentacja funkcji okresowej w szeregu

Witam, Po długim czasie bez matematyki sporo już się zapomniało z analizy. Poniższe stwierdzenie (może oczywiste) znalazłem bez dowodu w książce, którą ostanio czytałem: Niech f:\mathbb{R}\rightarrow \mathbb{C} będzie funkcją całkowalną spełniającą warunek: f(x+2\pi)=f(x) Oznaczmy ciąg c_{n} jako c_...
autor: Piotr Rutkowski
16 wrz 2014, o 18:42
Forum: Rachunek różniczkowy
Temat: Przedział otwarty
Odpowiedzi: 2
Odsłony: 317

Przedział otwarty

Niech \(\displaystyle{ h(x)=f(x)-g(x)}\). Czy funkcja ta jest różniczkowalna? Jeśli tak, to czym jest \(\displaystyle{ h'(x)}\)? Czym wtedy jest \(\displaystyle{ h(x)}\)?
autor: Piotr Rutkowski
16 wrz 2014, o 18:12
Forum: Hyde Park
Temat: Quiz filmowy
Odpowiedzi: 4469
Odsłony: 254194

Quiz filmowy

All about Eve. Jeśli poprawnie, oddaję zagadkę.
autor: Piotr Rutkowski
15 wrz 2014, o 17:24
Forum: Teoria liczb
Temat: Układ równań w ciele Z7
Odpowiedzi: 4
Odsłony: 606

Układ równań w ciele Z7

Nie rozumiem co to ma do rzeczy, gdybyś zostawił x_{2}=5-9x_{3} też byłoby poprawne, aczkolwiek mało schludnie, te zapisy są po prostu równoważne w \mathbb{Z}_{7} . Gdybyś jednak położył na przykład x_{3}=2 i potem napisał, że x_{2}=5-6=-1 i tak to zostawił. wtedy to jest trochę większa niedokładność.
autor: Piotr Rutkowski
15 wrz 2014, o 17:11
Forum: Teoria liczb
Temat: Układ równań w ciele Z7
Odpowiedzi: 4
Odsłony: 606

Układ równań w ciele Z7

To jest jedno i to samo. Najschludniej wygląda \(\displaystyle{ 5(x_{3}+1)}\)
autor: Piotr Rutkowski
15 wrz 2014, o 16:57
Forum: Własności i granice ciągów
Temat: Twierdzenie (ciągi)
Odpowiedzi: 2
Odsłony: 412

Twierdzenie (ciągi)

Ideowo jest w porządku. Jeśli chcesz być bardzo dokładny dodaj jeszcze, że wybierasz na tyle duże \(\displaystyle{ N}\) żeby wyrazy ciągu \(\displaystyle{ b_{n}}\) były dodatnie, co uprawnia późniejsze przejście.
autor: Piotr Rutkowski
29 cze 2013, o 15:35
Forum: Algebra liniowa
Temat: Macierz skośnie symetryczna i jej wyznacznik
Odpowiedzi: 2
Odsłony: 659

Macierz skośnie symetryczna i jej wyznacznik

Wiadomo, że jeśli macierz \(\displaystyle{ A}\) jest wymiaru \(\displaystyle{ n}\), to \(\displaystyle{ \det(xA)=x^{n}\det(A)}\). Ponadto \(\displaystyle{ \det(A)=\det(A^{T})}\), zatem jeśli \(\displaystyle{ n}\) jest nieparzyste, to \(\displaystyle{ \det(A)=\det(A^{T})=\det(-A)=(-1)^{n}\det(A)=-\det(A)}\), skąd oczywiście \(\displaystyle{ \det(A)=0}\)