Znaleziono 36 wyników

autor: [pawciu]
6 wrz 2011, o 23:50
Forum: Równania różniczkowe i całkowe
Temat: Równania charakterystyczne, postać całek szczególnych
Odpowiedzi: 2
Odsłony: 451

Równania charakterystyczne, postać całek szczególnych

Super dziękuje ! Mam ten sam problem z równaniem różniczkowym Eulera. Jak będą wyglądać te całki szczególne przy n-krotnym pierwiastku rzeczywistym i n-krotnym pierwiastku zespolonym, całki są postaci y(x)=x ^{r} -- 7 wrz 2011, o 16:40 --Całka szczególna równania Eulera dla k-krotnego pierwiastka rz...
autor: [pawciu]
6 wrz 2011, o 19:22
Forum: Równania różniczkowe i całkowe
Temat: Równania charakterystyczne, postać całek szczególnych
Odpowiedzi: 2
Odsłony: 451

Równania charakterystyczne, postać całek szczególnych

Rozważmy równanie liniowe jednorodne o stałych współczynnikach rzeczywistych. Szukam całek szczególnych postaci y(x)=e ^{rx} , ich postać zależy od pierwiastków równania charakterystycznego. Dla pierwiastka podwójnego r _{0} Całki szczególne będą postaci y _{1}(x)=e ^{r _{0}x } , y _{2}(x)=xe ^{r _{...
autor: [pawciu]
6 wrz 2011, o 19:03
Forum: Równania różniczkowe i całkowe
Temat: Trajektoria ortogonalna
Odpowiedzi: 5
Odsłony: 1329

Trajektoria ortogonalna

\(\displaystyle{ x \frac{dy}{dx}=y+1}\)
To juz chyba napewno dobrze
autor: [pawciu]
5 wrz 2011, o 19:11
Forum: Równania różniczkowe i całkowe
Temat: poczatkowy przykład z rr
Odpowiedzi: 2
Odsłony: 262

poczatkowy przykład z rr

Powinienes określić dziedzine na samym początku \(\displaystyle{ 1+y \neq 0}\) i wyrzucic \(\displaystyle{ y=-1}\) z dziedziny rozwiązań.
Nie musisz wyznaczać y, zapomniales jedynie o stałej. Rozwiązaniem jest rodzina krzywych dana takim równaniem jak otrzymałeś
autor: [pawciu]
5 wrz 2011, o 14:49
Forum: Równania różniczkowe i całkowe
Temat: Dwa proste równania różniczkowe Eulera drugiego rzędu
Odpowiedzi: 1
Odsłony: 1812

Dwa proste równania różniczkowe Eulera drugiego rzędu

1. x ^{2}y ^{\prime\prime} - xy ^{\prime}-2y=0 Równanie charakterystyczne równania Eulera r ^{2} -2r-2=0 r _{1}=1- \sqrt{3} r _{2}=1+ \sqrt{3} Rozwiązanie ogólne ma postać y(x)=C _{1}x ^{1- \sqrt{3}} + C _{2}x ^{1+ \sqrt{3}} 2. x ^{2}y ^{\prime\prime}+xy ^{\prime} +y=0 Równanie charakterystyczne rów...
autor: [pawciu]
4 wrz 2011, o 23:03
Forum: Równania różniczkowe i całkowe
Temat: Wyznaczyć czynnik całkujący równania
Odpowiedzi: 0
Odsłony: 430

Wyznaczyć czynnik całkujący równania

\left( 1+ \frac{\ln(y)}{x} \right) \mbox{d}x + \frac{1}{y} \mbox{d}y = 0 P(x,y)=1+ \frac{\ln(y)}{x}, Q(x,y)= \frac{1}{y} Będe poszukiwał czynnika całkującego u(x), u(y) zaleznego tylko od jednej zmiennej. Do spełnienia jest warunek \frac{ \partial }{ \partial y} \left( P \cdot u \right) =\frac{ \pa...
autor: [pawciu]
4 wrz 2011, o 21:32
Forum: Równania różniczkowe i całkowe
Temat: Równanie różniczkowe zwyczajne
Odpowiedzi: 2
Odsłony: 224

Równanie różniczkowe zwyczajne

Za duzo tych równań juz na dzis i zapomnialem zupelnie o równaniu zupelnym i czynniku calkującym Zaraz cos wykombinuje i dzięki za pomoc !!
autor: [pawciu]
4 wrz 2011, o 21:25
Forum: Równania różniczkowe i całkowe
Temat: Trajektoria ortogonalna
Odpowiedzi: 5
Odsłony: 1329

Trajektoria ortogonalna

Ok w takim razie równanie różniczkowe rodziny linii ma postać \(\displaystyle{ 2x+ (2y+2) \frac{dy}{dx}=0}\)
Teraz wystarczy tylko zamienić \(\displaystyle{ \frac{dy}{dx}}\) na \(\displaystyle{ \frac{-1}{\frac{dy}{dx}}}\) i otrzymujemy równanie różniczkowe trajektorii ortogonalnych \(\displaystyle{ 2x- (2y+2) \frac{dx}{dy}=0}\)
Czy to jest w porządku ?
autor: [pawciu]
4 wrz 2011, o 21:01
Forum: Równania różniczkowe i całkowe
Temat: Równanie różniczkowe zwyczajne
Odpowiedzi: 2
Odsłony: 224

Równanie różniczkowe zwyczajne

\(\displaystyle{ (x \sin(y)+y)dx+(x ^{2} \cos(y)+x\ln(x))dy=0}\)
Jak przeształcić to równanie do znanego typu ??
Proszę o pomoc
autor: [pawciu]
4 wrz 2011, o 20:57
Forum: Równania różniczkowe i całkowe
Temat: Równanie jednorodne
Odpowiedzi: 3
Odsłony: 169

Równanie jednorodne

tzn. \(\displaystyle{ y=x\arcsin \left( \frac{C}{x} \right)}\) ??
Podstawilem to i wyszlo ostatecznie \(\displaystyle{ \arcsin \left( \frac{C}{x} \right) =\arctan \left( \frac{C}{ \sqrt{x ^{2} -C ^{2} } } \right)}\)
autor: [pawciu]
4 wrz 2011, o 20:43
Forum: Równania różniczkowe i całkowe
Temat: Równanie jednorodne
Odpowiedzi: 3
Odsłony: 169

Równanie jednorodne

x \frac{ \mbox{d}y}{ \mbox{d}x } + x\tg \left( \frac{y}{x} \right) =y przekształcam do postaci równania jednorodnego dzieląc przez x \frac{ \mbox{d}y}{ \mbox{d}x } + \tg \left( \frac{y}{x} \right) - \frac{y}{x}=0 dalej podstawienie, całkowanie równania i otrzymuje wynik \sin \left( \frac{y}{x} \rig...
autor: [pawciu]
4 wrz 2011, o 20:20
Forum: Równania różniczkowe i całkowe
Temat: Równanie różniczkowe - rozpoznanie typu
Odpowiedzi: 1
Odsłony: 131

Równanie różniczkowe - rozpoznanie typu

\(\displaystyle{ (xy ^{2} +1)dx + (2x ^{2}y +xy)dy=0}\)
przekształcając
\(\displaystyle{ \frac{dy}{dx} + \frac{y}{2x+1} = \frac{1}{yx(2x+1)}}\)
Czy jest to równanie Bernouliego w którym \(\displaystyle{ n=-1}\)??
autor: [pawciu]
4 wrz 2011, o 20:12
Forum: Równania różniczkowe i całkowe
Temat: Trajektoria ortogonalna
Odpowiedzi: 5
Odsłony: 1329

Trajektoria ortogonalna

Wyznaczyć trajektorie ortogonalną rodziny krzywych x ^{2} + y ^{2} +2y=c Na początek wyznaczę równanie różniczkowe którego rozwiązaniem będzie rodzina lini. Zaczne od wyrugowania parametru c, jednak juz tu napotykam problem. Chcę wykorzystać do tego układ równań: \begin{cases} \frac{ \partial F(x,y,...
autor: [pawciu]
3 wrz 2011, o 15:08
Forum: Równania różniczkowe i całkowe
Temat: Równanie różniczkowe
Odpowiedzi: 1
Odsłony: 164

Równanie różniczkowe

Jest to równanie różniczkowe liniowe poczytaj o tym
autor: [pawciu]
3 wrz 2011, o 14:05
Forum: Równania różniczkowe i całkowe
Temat: równanie, problem z rozwiązaniem
Odpowiedzi: 5
Odsłony: 2088

równanie, problem z rozwiązaniem

Czy można rozwiązać to równanie jako jednorodne \(\displaystyle{ \frac{dy}{dx}=f( \frac{y}{x})}\) ??