Znaleziono 873 wyniki

autor: macik1423
29 sty 2019, o 18:45
Forum: Statystyka
Temat: Błąd średniokwadratowy aproksymacji
Odpowiedzi: 2
Odsłony: 301

Re: Błąd średniokwadratowy aproksymacji

dzięki
autor: macik1423
29 sty 2019, o 18:34
Forum: Statystyka
Temat: Błąd średniokwadratowy aproksymacji
Odpowiedzi: 2
Odsłony: 301

Błąd średniokwadratowy aproksymacji

Cześć, chciałbym się doradzić. Mam cztery punkty \(\displaystyle{ (x,y)}\) i muszę wyznaczyć błąd średniokwadratowy aproksymacji \(\displaystyle{ y=ax+b}\).
Czy mogę skorzystać ze wzoru:
\(\displaystyle{ \sqrt{ \frac{1}{n} \sum_{i=1}^{n}\left(y _{i} - \hat{ y_{i}}\left(x _{i}\right )\right )^{2}}}\)
gdzie \(\displaystyle{ \hat{ y_{i}}}\) wartość funkcji aproksymującej?
autor: macik1423
30 lis 2018, o 08:42
Forum: Planimetria
Temat: kąt i okręgi
Odpowiedzi: 3
Odsłony: 513

Re: kąt i okręgi

Dobrze jest.
autor: macik1423
29 lis 2018, o 14:39
Forum: Planimetria
Temat: kąt i okręgi
Odpowiedzi: 3
Odsłony: 513

Re: kąt i okręgi

Spróbuj wyznaczyć za pomocą twierdzenia Talesa na jakie długości dzieli odcinek OP punkt przecięcia okręgu x z tym odcinkiem. Zauważ, że odcinek OP przechodzi przez środek okręgu x . Skorzystaj z twierdzenia o kącie środkowym i wpisanym opartym na tym samym łuku. Wykorzystaj fakt, że promień okręgu ...
autor: macik1423
2 lip 2017, o 11:09
Forum: Równania różniczkowe i całkowe
Temat: r.r. Bernoulliego
Odpowiedzi: 5
Odsłony: 452

r.r. Bernoulliego

Jak rozwiązać równanie:
\(\displaystyle{ y'+xy=\frac{1}{x}\cdot y^{3}}\)?
Podjąłem oczywiście próbę ale na końcu przy uzmiennianiu stałej wychodzi całka do policzenia:
\(\displaystyle{ \int_{}^{} \frac{-2}{x\cdot e^{x^{2}}} \mbox{d}x}\)
autor: macik1423
6 cze 2017, o 19:43
Forum: Rachunek całkowy
Temat: Całka powierzchniowa
Odpowiedzi: 3
Odsłony: 340

Całka powierzchniowa

Witam, mam do policzenia całkę: \iint_{S}^{} x^3 \mbox{d}y \mbox{d}z +y^3 \mbox{d}z \mbox{d}x+z^3 \mbox{d}x \mbox{d}y , S jest zewnętrzną stroną sfery x^{2}+y^{2}+z^{2}=1 . Po zastosowaniu twierdzenia o dywergencji dostaje: \iiint_{V}^{} 3(x^2+y^2+z^2) \mbox{d}x \mbox{d}y \mbox{d}z potem przechodzę ...
autor: macik1423
2 maja 2017, o 11:35
Forum: Planimetria
Temat: Okrąg opisany na trapezie - oblicz promień
Odpowiedzi: 8
Odsłony: 1125

Okrąg opisany na trapezie - oblicz promień

Trzeba skorzystać z twierdzenia o czworokącie wpisanym w okrąg i kątach wpisanych opartych na tym samym łuku, jeśli chcesz to wstawię rysunek.
autor: macik1423
1 maja 2017, o 14:07
Forum: Planimetria
Temat: Okrąg opisany na trapezie - oblicz promień
Odpowiedzi: 8
Odsłony: 1125

Okrąg opisany na trapezie - oblicz promień

Bez twierdzenia Ptolemeusza, dokończę swoje rozwiązanie. Układasz tw. kosinusów dla trójkąta ADB : a^{2}=36+16-2\cdot 6 \cdot 4 \cos\alpha i dla trójkąta ADC : a^{2}=25+16-2 \cdot 4 \cdot 5 \cos(180^{\circ}-\alpha) , stąd \cos\alpha=\frac{1}{8} . Potem wyznaczyć \sin\alpha z jedynki trygonometryczne...
autor: macik1423
1 maja 2017, o 13:55
Forum: Planimetria
Temat: Okrąg opisany na trapezie - oblicz promień
Odpowiedzi: 8
Odsłony: 1125

Okrąg opisany na trapezie - oblicz promień

Oznacz sobie \(\displaystyle{ |AB|=a}\), kąt na przeciwko \(\displaystyle{ AB}\) jest równy \(\displaystyle{ \alpha}\). Zatem kąt środkowy \(\displaystyle{ 2\alpha}\). Stąd z twierdzenia kosinusów \(\displaystyle{ R=\frac{a}{2\sin\alpha}}\). Potem spróbuj użyć dwa razy tw. kosinusów tak żeby pojawił się kąt \(\displaystyle{ \alpha}\) i \(\displaystyle{ a}\).
autor: macik1423
19 mar 2017, o 20:28
Forum: Planimetria
Temat: Problem z polami
Odpowiedzi: 3
Odsłony: 429

Problem z polami

Punkt E niech będzie wierzchołkiem trójkąta ABE po przedłużeniu odcinków AD, BC . Spróbuj policzyć pole całego trójkąta ABE oraz trójkąta DCE skorzystaj tutaj z tw. Talesa. Wyraź pole trójkąta AMB za pomocą pola AMD i BMC , DCE , AEB . Potem policz wartość wyrażenia podanego w poleceniu.
autor: macik1423
19 mar 2017, o 17:43
Forum: Planimetria
Temat: Problem z polami
Odpowiedzi: 3
Odsłony: 429

Problem z polami

Przedłuż odcinki \(\displaystyle{ AD, BC}\) jaki trójkąt powstanie? Skorzystaj z tw. Talesa.
autor: macik1423
29 sty 2017, o 08:41
Forum: Rachunek całkowy
Temat: Problem z całką
Odpowiedzi: 2
Odsłony: 280

Problem z całką

Podstawienie
\(\displaystyle{ \left|\begin{matrix}t=1+e^{2x}\\ \mbox{d}t =2e^{2x} \mbox{d}x \\ t-1=e^{2x}\\ \mbox{d}x =\frac{ \mbox{d}t }{2(t-1)}\end{matrix}\right|}\)
A dalej podstawienie:
\(\displaystyle{ \left|\begin{matrix}u=\sqrt{t}\\ \mbox{d}u=\frac{1}{2\sqrt{t}} \mbox{d}t \end{matrix}\right|}\)
autor: macik1423
28 sty 2017, o 12:09
Forum: Równania różniczkowe i całkowe
Temat: Funkcja od pochodnej w rownaniu rozniczkowym?
Odpowiedzi: 1
Odsłony: 271

Funkcja od pochodnej w rownaniu rozniczkowym?

\(\displaystyle{ \sin\left(\frac{ \mbox{d}y }{ \mbox{d}t}\right)=t}\)
\(\displaystyle{ \arcsin t=\frac{ \mbox{d}y}{ \mbox{d}t}}\)
\(\displaystyle{ y= \int_{}^{}\arcsin t \mbox{d}t}\)
o ile \(\displaystyle{ y=y(t)}\).
autor: macik1423
28 sty 2017, o 11:36
Forum: Kombinatoryka i matematyka dyskretna
Temat: liczba sposobów rozłożenia liczby na trzy czynniki
Odpowiedzi: 3
Odsłony: 463

liczba sposobów rozłożenia liczby na trzy czynniki

Może tak, jedno z rozwiązań:
\(\displaystyle{ 5,5,5,5|5,5,5,11,11,11|13,13,23}\),
\(\displaystyle{ 625\cdot 166375 \cdot 3887}\),
wstawiamy dwie kreski w możliwe \(\displaystyle{ 12}\) miejsc \(\displaystyle{ {12 \choose 2}}\)
autor: macik1423
14 sty 2017, o 13:19
Forum: Funkcje trygonometryczne i cyklometryczne
Temat: Proste równanie
Odpowiedzi: 1
Odsłony: 341

Proste równanie

\sin \left( x \right) +\sin \left( 2x \right) =\cos \left( x \right) +\cos \left( 2x \right) 2\sin \left( \frac{3}{2}x \right) \cos \left( \frac{x}{2} \right) =2\cos \left( \frac{3}{2}x \right) \cos \left( \frac{x}{2} \right) \cos \left( \frac{x}{2} \right) \left( 2\sin \left( \frac{3}{2}x \right) ...