Znaleziono 383 wyniki

autor: lenkaja
26 lis 2014, o 13:25
Forum: Zadania "z treścią"
Temat: Obliczenia kalendarzowe.
Odpowiedzi: 6
Odsłony: 28668

Obliczenia kalendarzowe.

Zgadzam sie z Toba Tez tak uwazam.
autor: lenkaja
25 lis 2014, o 21:06
Forum: Zadania "z treścią"
Temat: Obliczenia kalendarzowe.
Odpowiedzi: 6
Odsłony: 28668

Obliczenia kalendarzowe.

Jesli chodzi o zad. b i c, to uwazam jak Ty i tak tez robie. Inny nauczyciel powiedzial mi inaczej, dlatego pytam. Wg niego powinno byc w b 14, a w c 15.
Jesli chodzi o a) to waham sie pomiedzy 14, a 15.
Jesli wakacje trwaja od 26 czerwca do 31 sierpnia, to 26 tez sie liczy.
autor: lenkaja
25 lis 2014, o 13:46
Forum: Zadania "z treścią"
Temat: Obliczenia kalendarzowe.
Odpowiedzi: 6
Odsłony: 28668

Obliczenia kalendarzowe.

Mam dylemat z zadaniami typu: a) Marek był u babci od 14 maja do 28 maja. Ile pełnych dni był u babci? Czy odpowiedzią będzie 14 dni, czy 15 dni? b) Ile dni minie od 2 czerwca do 15 czerwca? Czy 13 dni, czy 14 dni? c) Kasia ma urodziny 3 maja, a Zosia 2 tygodnie później. Ile dni jest różnicy między ...
autor: lenkaja
17 kwie 2012, o 13:44
Forum: Wartość bezwzględna
Temat: Rozwiąż nierownosc.
Odpowiedzi: 5
Odsłony: 351

Rozwiąż nierownosc.

Nie mozemy tez korzystac z rysunku. Mamy to rozpisac tak normalnie, tylko z jakims zalozeniem.

Np jakby bylo \(\displaystyle{ \left| x-5\right| \ge 3}\) to by sie rozpisalo \(\displaystyle{ x-5 \ge 3}\) \(\displaystyle{ \vee}\) \(\displaystyle{ x-5 \le -3}\). Mamy to zrobi tak, tylko z jakims zalozeniem, zeby bylo dobrze bo wystepuje "x" po prawej stronie
autor: lenkaja
17 kwie 2012, o 13:36
Forum: Wartość bezwzględna
Temat: Rozwiąż nierownosc.
Odpowiedzi: 5
Odsłony: 351

Rozwiąż nierownosc.

Rozwiaz nierownosc:
\(\displaystyle{ \left| 2x+5\right| \ge x-2}\).
Ps. nie moge rozpisywac na przypadki.
autor: lenkaja
28 lut 2012, o 21:11
Forum: Geometria analityczna
Temat: Wyznacz "a" tak, aby przeksztalcenie bylo izometria.
Odpowiedzi: 5
Odsłony: 183

Wyznacz "a" tak, aby przeksztalcenie bylo izometria.

Jeżeli dziedziną tego przekształcenia będzie cała płaszczyzna, to nie ma ono szans na to, aby być izometrią. Powinno Ci wyjść dla \ a= \frac{1-x_1-x_2}{2} , czyli, aby a było stałe musi być x_1=x_2 . Jak zawęzisz dziedzinę do prostych pionowych x=b, \ b \in R , to będzie ok. Ewentualnie a=-x Ale gd...
autor: lenkaja
28 lut 2012, o 20:34
Forum: Geometria analityczna
Temat: Wyznacz "a" tak, aby przeksztalcenie bylo izometria.
Odpowiedzi: 5
Odsłony: 183

Wyznacz "a" tak, aby przeksztalcenie bylo izometria.

I wlasnie tak robilam. I wyszlo mi:
\(\displaystyle{ a= \frac{1-x _{b}-x _{a} }{2}}\) lub \(\displaystyle{ a=\frac{-1-x _{b}-x _{a} }{2}}\).

I co z tego wynika?
autor: lenkaja
28 lut 2012, o 20:05
Forum: Geometria analityczna
Temat: Wyznacz "a" tak, aby przeksztalcenie bylo izometria.
Odpowiedzi: 5
Odsłony: 183

Wyznacz "a" tak, aby przeksztalcenie bylo izometria.

Wyznacz \(\displaystyle{ a}\) tak, aby przekształcenie \(\displaystyle{ P}\) bylo izometria.

\(\displaystyle{ P: \begin{cases} x`=(x+a) ^{2} \\ y`=y \end{cases}}\).
autor: lenkaja
24 lut 2012, o 15:14
Forum: Geometria analityczna
Temat: Os symetrii odcinka.
Odpowiedzi: 3
Odsłony: 450

Os symetrii odcinka.

Dziekuje bardzo A to drugie zadanie? Macie pomysl?
autor: lenkaja
24 lut 2012, o 14:52
Forum: Geometria analityczna
Temat: Os symetrii odcinka.
Odpowiedzi: 3
Odsłony: 450

Os symetrii odcinka.

1) Napisz rownania osi symetrii odcinka AB (punkty A i B sa rozne w roznych podpunktach zadania). Mi chodzi o sposob rozwiazania Ja robilam to tak, ze wyznaczylam rownanie prostej zawierajacej odcinek AB - i to bedzie pierwsza os. Potem wyznaczylam srodek odcinka AB i rownanie prostej prostopadlej d...
autor: lenkaja
20 gru 2011, o 13:36
Forum: Rachunek różniczkowy
Temat: Pokazac, ze funkcja jest klasy C nieskonczonosc.
Odpowiedzi: 5
Odsłony: 368

Pokazac, ze funkcja jest klasy C nieskonczonosc.

Nie wiem wlasnie z jakich twierdzen tu skorzystac, bo z definicji to bardzo duzo liczenia... I indukcja itd. A zadnych tweirdzen na wykladzie nam nie podali do tego.
autor: lenkaja
20 gru 2011, o 13:35
Forum: Rachunek różniczkowy
Temat: Obliczyc rozniczki funkcji.
Odpowiedzi: 2
Odsłony: 125

Obliczyc rozniczki funkcji.

Ja zrobilam tak:
\(\displaystyle{ d _{(0,0)}(h,k)= \frac{df}{dx}(0,0)h+\frac{df}{dy}(0,0)k=0}\)
\(\displaystyle{ d _{(0,0)} ^{2}f=d(df)=0.}\)
Czy to jest dobrze?
autor: lenkaja
20 gru 2011, o 13:32
Forum: Rachunek różniczkowy
Temat: Pokazac, ze funkcja jest klasy C nieskonczonosc.
Odpowiedzi: 5
Odsłony: 368

Pokazac, ze funkcja jest klasy C nieskonczonosc.

1) W \(\displaystyle{ t=0}\)
2) W \(\displaystyle{ (x,y)=(0,0)}\)

Ale mi bardziej chodzi o to jak sprawdzic, ze jest nieskonczenie wiele razy rozniczkowalana w tych punktach i ze te pochodne sa ciagle....
autor: lenkaja
20 gru 2011, o 13:13
Forum: Rachunek różniczkowy
Temat: Obliczyc rozniczki funkcji.
Odpowiedzi: 2
Odsłony: 125

Obliczyc rozniczki funkcji.

\(\displaystyle{ f(x,y)=xy\sin(x,y)}\)
Obliczyc \(\displaystyle{ d _{(0,0)}f, d _{(0,0)} ^{2}f}\).
autor: lenkaja
20 gru 2011, o 13:12
Forum: Rachunek różniczkowy
Temat: Pokazac, ze funkcja jest klasy C nieskonczonosc.
Odpowiedzi: 5
Odsłony: 368

Pokazac, ze funkcja jest klasy C nieskonczonosc.

1) Sprawdzic, ze \(\displaystyle{ f \in C ^{ \infty }(R,R)}\).
\(\displaystyle{ f(t)= \begin{cases} e ^{- \frac{1}{t ^{2} } },t \neq 0 \\ 0,t=0 \end{cases}}\);

2) Sprawdzic, ze \(\displaystyle{ f \in C ^{ \infty }(R ^{2} ,R)}\).
\(\displaystyle{ f(x,y)= \begin{cases}xye ^{- \frac{1}{x ^{2}+y ^{2} } } ,(x,y) \neq (0,0)\\ 0,(x,y)=(0,0)\end{cases}}\).