Źle to nazwałem, ale powiedzmy, że objętość to maksymalna waga jaką można włożyć do pudełka. Chodzi o coś podobnego do problemu pakowania (bin packing) tylko, że mamy daną liczbę pudełek, a szukamy najmniejszej pojemności pudełka.
Dodano po 1 godzinie 35 minutach 59 sekundach:
To jest chyba to ...
Znaleziono 43 wyniki
- 3 gru 2022, o 20:45
- Forum: Kombinatoryka i matematyka dyskretna
- Temat: Problem optymalizacyjny
- Odpowiedzi: 2
- Odsłony: 342
- 3 gru 2022, o 14:46
- Forum: Kombinatoryka i matematyka dyskretna
- Temat: Problem optymalizacyjny
- Odpowiedzi: 2
- Odsłony: 342
Problem optymalizacyjny
Hej,
Zastanawiam się nad takim problemem. Załóżmy, że mamy n przedmiotów o wagach a_1, …, a_n . Rozmieszczamy te przedmioty w m pudełkach o równych objetościach R . Potrzebuję znaleźć minimalną objetość pudełka R , przy której przedmioty zmieszczą się w pudełkach. n, m to dane liczby naturalne, a ...
Zastanawiam się nad takim problemem. Załóżmy, że mamy n przedmiotów o wagach a_1, …, a_n . Rozmieszczamy te przedmioty w m pudełkach o równych objetościach R . Potrzebuję znaleźć minimalną objetość pudełka R , przy której przedmioty zmieszczą się w pudełkach. n, m to dane liczby naturalne, a ...
- 3 lis 2015, o 22:48
- Forum: Algebra abstrakcyjna
- Temat: rząd ciała, a jego charakterystyka
- Odpowiedzi: 3
- Odsłony: 687
rząd ciała, a jego charakterystyka
a mogę tak o:
ciało jest grupą ze względu na samo dodawanie, ponieważ charakterystyka ciała jest równa rzędowi jedynki ze względu na dodawanie to z twierdzenia Lagrange'a wynika, że rząd jedynki dzieli rząd grupy czyli również ciała?
ciało jest grupą ze względu na samo dodawanie, ponieważ charakterystyka ciała jest równa rzędowi jedynki ze względu na dodawanie to z twierdzenia Lagrange'a wynika, że rząd jedynki dzieli rząd grupy czyli również ciała?
- 3 lis 2015, o 21:59
- Forum: Algebra abstrakcyjna
- Temat: rząd ciała, a jego charakterystyka
- Odpowiedzi: 3
- Odsłony: 687
rząd ciała, a jego charakterystyka
Witam, chciałbym zapytać czy istnieje ciało, którego charakterystyka nie dzieli liczby jego elementów? A jeśli istnieje to prosił bym o przykład.
Z góry dziękuję za odpowiedź
Z góry dziękuję za odpowiedź
- 18 kwie 2015, o 12:14
- Forum: Prawdopodobieństwo
- Temat: Urny i kule
- Odpowiedzi: 0
- Odsłony: 316
Urny i kule
Witam. Mam takie zadanie. Mamy urny zawierające m białych i n czarnych kul ( m>n ). Losujemy kolejno kule. jakie jest prawdopodobieństwo, że w pewnej chwili liczba wylosowanych kul będzie taka sama?
Myślę tak:
Przestrzenią zdarzeń elementarnych jest m+n wyrazowy ciąg kul. Taki ciąg możemy ...
Myślę tak:
Przestrzenią zdarzeń elementarnych jest m+n wyrazowy ciąg kul. Taki ciąg możemy ...
- 17 lis 2014, o 02:23
- Forum: Geometria analityczna
- Temat: izometria płaszczyzny
- Odpowiedzi: 1
- Odsłony: 622
izometria płaszczyzny
Mam ogromny problem z takim zadaniem, sam doszedłem tylko do tego że izometria nie ma punktów stałych, proszę o wskazówki.
Określić typ izometrii płaszczyzny określonej jako:
F(x,y)=( \frac{3}{5}x+ \frac{4}{5}y-3,\frac{4}{5}x- \frac{3}{5}y+4)
Jeżeli jest to obrót wyznaczyć jego środek i kąt ...
Określić typ izometrii płaszczyzny określonej jako:
F(x,y)=( \frac{3}{5}x+ \frac{4}{5}y-3,\frac{4}{5}x- \frac{3}{5}y+4)
Jeżeli jest to obrót wyznaczyć jego środek i kąt ...
- 18 kwie 2014, o 20:17
- Forum: Rachunek całkowy
- Temat: Całka z definicji
- Odpowiedzi: 9
- Odsłony: 770
Całka z definicji
Ale jakby ktoś potrafił to ja bym chętnie zobaczył...
- 18 kwie 2014, o 20:10
- Forum: Rachunek całkowy
- Temat: Całka z definicji
- Odpowiedzi: 9
- Odsłony: 770
Całka z definicji
W zbiorze Bermana tą całkę należy w dwóch różnych zadaniach policzyć z definicji: jak wyżej z użyciem ciągu geometrycznego oraz z podziałem na równe części. Więc chyba z podziałem na równe części powinno się dać? Chociaż nie próbowałem.
Przyjrzyj się dokładniej poleceniom tych dwóch zadań w ...
- 18 kwie 2014, o 19:27
- Forum: Rachunek całkowy
- Temat: Całka z definicji
- Odpowiedzi: 9
- Odsłony: 770
Całka z definicji
Bardzo dziękuję!-- 18 kwi 2014, o 18:47 --Jedna mało znacząca uwaga. Chyba w górnej granicy sumowania w pierwszej sumie powinno być \(\displaystyle{ n-1}\).
- 18 kwie 2014, o 18:51
- Forum: Rachunek całkowy
- Temat: Całka z definicji
- Odpowiedzi: 9
- Odsłony: 770
Całka z definicji
Przepraszam, źle się wyraziłem, chodziło mi o to, że dla równego podziału potrafię zapisać sumę całkową.
- 18 kwie 2014, o 16:10
- Forum: Rachunek całkowy
- Temat: Całka z definicji
- Odpowiedzi: 9
- Odsłony: 770
Całka z definicji
Mam za zadanie obliczyć całkę Riemanna \(\displaystyle{ \int_{1}^{2} \frac{dx}{x}}\) z definicji dzieląc przedział \(\displaystyle{ [1,2]}\) tak aby współrzędne punktów podziału tworzyły ciąg geometryczny. Dla podziału na równe części dałem radę, ale dla wymaganego w zadaniu nie wiem jak w ogóle zapisać sumę całkową.
- 19 mar 2014, o 01:25
- Forum: Dyskusje o matematyce
- Temat: Jaki jest najpiękniejszy wzór matematyki?
- Odpowiedzi: 167
- Odsłony: 133301
Jaki jest najpiękniejszy wzór matematyki?
a dla mnie najpiękniejszym jest \(\displaystyle{ 1=1}\) on w swojej prostocie wyraża nawet najdoskonalszą tożsamość
- 19 mar 2014, o 01:14
- Forum: Dyskusje o matematyce
- Temat: Oznaczenia w szkołach
- Odpowiedzi: 16
- Odsłony: 2360
Oznaczenia w szkołach
jestem miłośnikiem rosyjskiego i dla mnie kąt "szcza" brzmi zdecydowanie lepiej niż kąt "gamma".
- 19 mar 2014, o 00:41
- Forum: Rachunek całkowy
- Temat: całka nieoznaczona
- Odpowiedzi: 5
- Odsłony: 500
całka nieoznaczona
Dziękuję, to forum jest wspaniałe!
- 14 mar 2014, o 19:22
- Forum: Rachunek całkowy
- Temat: całka nieoznaczona
- Odpowiedzi: 5
- Odsłony: 500
całka nieoznaczona
dzięki, więc pewnie to błąd w druku w zbiorze zadań -- 14 mar 2014, o 19:39 --Korzystając z okazji jeszcze jedno pytanie. Czy da się jakość prosto rozpoznać czy dana całka wyraża się funkcjami elementarnymi?