Znaleziono 267 wyników

autor: Duke
31 sty 2010, o 13:35
Forum: Własności i granice ciągów
Temat: Granica z cosinusem i sinusem
Odpowiedzi: 1
Odsłony: 176

Granica z cosinusem i sinusem

\(\displaystyle{ \frac{1-\cos x^{500}}{\sin x^{1000}}}\)
autor: Duke
30 sty 2010, o 14:47
Forum: Własności i granice ciągów
Temat: Dla jakich szereg zbieżny
Odpowiedzi: 6
Odsłony: 419

Dla jakich szereg zbieżny

Robię dziś kilkadziesiąt zadań, tak samo jak wczoraj, przedwczoraj i przed..... Powie ktoś w końcu przez co to podzielić? teraz badam zbieżność innego szeregu i mam pytanie \sum_{n=1}^{+ \infty } = (e^{ \frac{1}{n} }- (1+\frac{1}{n}+\frac{1}{2n^{2}}) i teraz robię f(n)=1+\frac{1}{n}+\frac{1}{2n^{2}}...
autor: Duke
30 sty 2010, o 13:57
Forum: Rachunek różniczkowy
Temat: rozwiązanie do sprawdzenia z maclurina
Odpowiedzi: 0
Odsłony: 192

rozwiązanie do sprawdzenia z maclurina

Witam Niech R(x)=sinx-(x- \frac{x^{3}}{3!} ) mam oszacować czy |R(1)|> \frac{1}{24} Rozwiązanie Więc mamy rozwinięcie dla maclurina do trzeciej pochodnej sinx=x- \frac{x^{3}}{3!} +R_{n}(x) muszę w takim razie oszacować czy reszta z rowinięcia sinusa do trzeciej pochodnej jest większa od 1/24. A więc...
autor: Duke
30 sty 2010, o 12:21
Forum: Własności i granice ciągów
Temat: Dla jakich szereg zbieżny
Odpowiedzi: 6
Odsłony: 419

Dla jakich szereg zbieżny

ZNAM TO, PRÓBOWAŁEM., PROWADZI TO WYŁĄCZNIE DO NIEOZNACZONOŚCI
W mianowniku wszystko dązy wtedy do zera a w liczniku mamy 1. Nic to nie daje 1/0-->+oo

A tu kryterium asymptotyczne(ilorazowe) NIE DZIAŁA.
autor: Duke
29 sty 2010, o 22:21
Forum: Własności i granice ciągów
Temat: udowodnij ze iloczyn bezwzglenie zbieżny
Odpowiedzi: 7
Odsłony: 436

udowodnij ze iloczyn bezwzglenie zbieżny

Witam Zakładamy że \sum_{+ \infty }^{n=1}b_{n} jest zbieżny oraz \sum_{+ \infty }^{n=1}a_{n} jest bezwzględnie zbieżny. Wykaż że \sum_{+ \infty }^{n=1}a_{n}b_{n} jest bezwzględnie zbieżny. Czy przy założeniu jedynie zbieżności obu szeegów również otrzymamy szereg zbieżny, podaj przykład kiedy nie. W...
autor: Duke
29 sty 2010, o 22:17
Forum: Własności i granice ciągów
Temat: Dla jakich szereg zbieżny
Odpowiedzi: 6
Odsłony: 419

Dla jakich szereg zbieżny

Duke pisze: Proszę o ROZWIĄZANIE.
Znam, nic nie daje. Jak w cytacie.
autor: Duke
29 sty 2010, o 21:41
Forum: Rachunek różniczkowy
Temat: Wykaż zależność z Rolle LAgrangea trudne
Odpowiedzi: 1
Odsłony: 262

Wykaż zależność z Rolle LAgrangea trudne

Witam
Niech \(\displaystyle{ f:[1;+\infty] \rightarrow R}\) będzie funkcją różniczkowalną taką, że \(\displaystyle{ \lim_{x \to + \infty } f'(x)=a}\) oraz żniech \(\displaystyle{ a_{n}=f(n+1)-f(n)}\) dla \(\displaystyle{ n \in N}\). Wykaż, że
\(\displaystyle{ \lim_{n \to + \infty } a_{n}=a}\)
autor: Duke
29 sty 2010, o 19:31
Forum: Własności i granice ciągów
Temat: Dla jakich szereg zbieżny
Odpowiedzi: 6
Odsłony: 419

Dla jakich szereg zbieżny

Znajdź wszystkie takie p>0 dla których jest zbieżny ciąg zadany dla n \in N wzrorem c_{n}= \sum_{k=1}^{n} \frac{k^{p}+k+1}{k^{3}-k^{2}+1} Proszę o ROZWIĄZANIE. Dziękuję. -- 29 stycznia 2010, 19:57 -- JAK UZASADNIĆ PUNKT C. Wiem że mogę napisać, dziedzina składa się z dwóch przedziałów, a ZW jest tró...
autor: Duke
27 sty 2010, o 18:17
Forum: Rachunek różniczkowy
Temat: pochodna w wartości bzw
Odpowiedzi: 1
Odsłony: 207

pochodna w wartości bzw

Witam czy pochodna
\(\displaystyle{ |x^{2}+2x-3|}\)
różni się od pochodnej
\(\displaystyle{ x^{2}+2x-3}\)
Jeśli NIE, to w jakich przypadkach się różni, dlaczego i czym.
Jeśli TAK, to dlaczego i czym?
autor: Duke
26 sty 2010, o 20:42
Forum: Rachunek różniczkowy
Temat: Pochodna ilorazu pod pierwiastkiem arcsin
Odpowiedzi: 10
Odsłony: 659

Pochodna ilorazu pod pierwiastkiem arcsin

Ok dziękuję, to straszna ta książka-Wlodarski, Krysicki. Tak w ogole to dziękuję. -- 26 stycznia 2010, 21:47 -- Ok to skończyły się problemy algebraiczne naomiast pojawiły się techniczne jak zrobić np. takie coś y=[cos(x)]^{ctgx} Bo ni kijem ni szczotką, a 0<x< \frac{pi}{2} Any IDEAS? Albo rozwiązan...
autor: Duke
26 sty 2010, o 20:33
Forum: Rachunek różniczkowy
Temat: Pochodna ilorazu pod pierwiastkiem arcsin
Odpowiedzi: 10
Odsłony: 659

Pochodna ilorazu pod pierwiastkiem arcsin

JEJ I AGAIN
\(\displaystyle{ ln(ln(ln(x)))}\)
\(\displaystyle{ y=ln(z);
z=ln(u);
u=ln(x);
\frac{dy}{dz} \frac{dz}{du} \frac{du}{dx} = \frac{1}{ln(ln(x))* ln(x)* x}}\)


a w opdowiedziach jest
\(\displaystyle{ \frac{1}{(1-x) \sqrt{x} }}\)

Czy możesz wskazać u mnie błąd?
autor: Duke
26 sty 2010, o 20:21
Forum: Rachunek różniczkowy
Temat: Pochodna ilorazu pod pierwiastkiem arcsin
Odpowiedzi: 10
Odsłony: 659

Pochodna ilorazu pod pierwiastkiem arcsin

Ok, masz rację, źle skróciłem, ale czy u' jest ok wyliczone?
autor: Duke
26 sty 2010, o 18:52
Forum: Rachunek różniczkowy
Temat: Pochodna ilorazu pod pierwiastkiem arcsin
Odpowiedzi: 10
Odsłony: 659

Pochodna ilorazu pod pierwiastkiem arcsin

Właśnie o to bym prosił, bo nie wiem jakbym nie uprościł dostaje co innego niż w odpowiedziach, jeśli ten wynik jest Twoim zdaniem na pewno poprawny, to jest te obliczenia, to jest ok i się nie będę przejmować. JEST OK?(chodzi o wyniki składowe-metode, oczywiscie ze się odejmie w du/dy) EDIT: to jes...
autor: Duke
26 sty 2010, o 18:12
Forum: Rachunek różniczkowy
Temat: Pochodna ilorazu pod pierwiastkiem arcsin
Odpowiedzi: 10
Odsłony: 659

Pochodna ilorazu pod pierwiastkiem arcsin

1 z= \sqrt{u} i niech 2 u= \frac{1-arcsin(y)}{1+arcsin(y)} a więc z'= \frac{dz}{du} \frac{du}{dy} i mamy że \frac{dz}{du} = \frac{1}{2 \sqrt{u} } natomiast \frac{du}{dy}= \frac{ \frac{-1-arcsin(y)}{ \sqrt{1-y^{2}} } - \frac{1-arcsin(y)}{ \sqrt{1-y^{2}} } }{(1+arcsin(y))^{2}} i teraz to wszystko do w...
autor: Duke
26 sty 2010, o 16:12
Forum: Rachunek różniczkowy
Temat: Pochodna ilorazu pod pierwiastkiem arcsin
Odpowiedzi: 10
Odsłony: 659

Pochodna ilorazu pod pierwiastkiem arcsin

Witam, nie mam pojęcia co robię źle że wychodzi mi niepoprawny wyniik
\(\displaystyle{ \sqrt{ \frac{1-arcsin(y)}{1+arcsin(y)} }}\)
HELP, proszę o obliczenia.