Znaleziono 6 wyników

autor: Spider49
9 sty 2018, o 18:22
Forum: Równania różniczkowe i całkowe
Temat: Transformata Laplace'a
Odpowiedzi: 1
Odsłony: 292

Transformata Laplace'a

Witam, Potrzebuję pomocy przy dokończeniu zadania. Celem jest rozwiązanie tego układu za pomocą transformaty Laplace'a \left\{\begin{array}{l} x'+y'+y=e^t\\x'-y'+x=0\end{array} \left\{\begin{array}{l} x(0)=0\\y(0)=1\end{array} Obkładam w każdym równaniu obustronnie transformatą Laplance'a. \left\{\b...
autor: Spider49
7 sty 2018, o 18:31
Forum: Równania różniczkowe i całkowe
Temat: Metoda operatorowa
Odpowiedzi: 5
Odsłony: 413

Re: Metoda operatorowa

Korzystałem z tych stron:
https://epodreczniki.open.agh.edu.pl/op ... duleId=585
https://epodreczniki.open.agh.edu.pl/op ... duleId=584
autor: Spider49
7 sty 2018, o 17:03
Forum: Równania różniczkowe i całkowe
Temat: Metoda operatorowa
Odpowiedzi: 5
Odsłony: 413

Metoda operatorowa

Witam, Mam problem z rozwiązaniem tego układu metodą operatorową. \begin{cases} x'+x-z=0 \\ z'+y'+y=0 \\ x'+x-z'=0 \end{cases} Zapisałem powyższy układ przy użyciu operatorów. \begin{cases} (D+1)x-z=0 \\ Dz+(D+1)y=0 \\ (D+1)x-Dz=0 \end{cases} \begin{bmatrix} D+1&0&-1\\0&D+1&D\\D+1&0&-D\end{bmatrix}=...
autor: Spider49
5 sty 2018, o 22:51
Forum: Analiza wyższa i funkcjonalna
Temat: Ekstremala funkcjonału
Odpowiedzi: 1
Odsłony: 276

Ekstremala funkcjonału

Witam. Potrzebuje pomocy w rozwiązaniu tego zadania. Polega na znalezieniu ekstremów tego funkcjonału: F(u)= \int_{2}^{1}((2x+x^{2}u')e^{u}-x^2-3u^2u')dx \\ u(1)=1 \\ u(e)=0 -- 5 sty 2018, o 23:21 -- Korzystałem ze wzoru: \frac{d}{dx}\left( \frac{\partial L}{\partial u'} \right)- \frac{\partial L}{\...
autor: Spider49
29 gru 2017, o 21:03
Forum: Równania różniczkowe i całkowe
Temat: Transformata Laplace'a
Odpowiedzi: 1
Odsłony: 338

Transformata Laplace'a

Potrzebuje pomocy w rozwiązaniu takiego układu równań:
\(\displaystyle{ \begin{cases} x'+y'+y=e^t \\ x'-y'+x=0 \end{cases}\\ x(0)=0,\ y(0)=1}\)

Celem jest rozwiązanie układu równań przy użyciu transformaty Laplace'a.
autor: Spider49
18 gru 2017, o 21:49
Forum: Równania różniczkowe i całkowe
Temat: Równanie różniczkowe o zmiennych rozdzielonych.
Odpowiedzi: 2
Odsłony: 256

Równanie różniczkowe o zmiennych rozdzielonych.

Witam,
Potrzebuje pomocy w rozwiązaniu takiego równania:

\(\displaystyle{ y'=-(x-y)-1+\frac{1}{x-y+2}}\)

Celem jest wyznaczenie rozwiązania ogólnego o zmiennych rozdzielonych lub sprowadzić do równania o zmiennych rozdzielonych.