Znaleziono 466 wyników

autor: Rafsaf
13 gru 2019, o 00:19
Forum: Kombinatoryka i matematyka dyskretna
Temat: Na ile sposobów...
Odpowiedzi: 7
Odsłony: 1449

Re: Na ile sposobów...

Up, 1 a)

\(\displaystyle{ {n \choose k } \cdot n ^{m-k} }\)
autor: Rafsaf
7 lis 2019, o 01:18
Forum: Kombinatoryka i matematyka dyskretna
Temat: podzielność - ile jest liczb niepodzielnych przez 2,6,8
Odpowiedzi: 7
Odsłony: 1416

Re: podzielność - ile jest liczb niepodzielnych przez 2,6,8

Tak, teraz już moce tych zbiorów liczysz poprawnie,
jest inaczej niż napisałeś bo przy \left| A \cap B \cap C\right| jest inny znak niż przy \left| A \cap B\right| itp. czyli

1000+333−333+250−250−83+83=1000

a to już wynika z wzoru na \left| A \cup B \cup C\right|

Nie mam predyspozycji by się ...
autor: Rafsaf
6 lis 2019, o 19:58
Forum: Kombinatoryka i matematyka dyskretna
Temat: podzielność - ile jest liczb niepodzielnych przez 2,6,8
Odpowiedzi: 7
Odsłony: 1416

Re: podzielność - ile jest liczb niepodzielnych przez 2,6,8

Tak. będzie wynik 333 dla liczb podzielnych przez 2 i 6


A \cap B to jak rozumiem zbiór takich liczb, które są podzielne jednocześnie przez 6 i przez 2. Dlaczego zatem nie mogę wykorzystać analogicznego sposobu liczenia tego zbioru?


Oczywiście, to są takie podzielne jednocześnie przez 6 i ...
autor: Rafsaf
6 lis 2019, o 19:43
Forum: Kombinatoryka i matematyka dyskretna
Temat: Niepoprawne zadanie
Odpowiedzi: 5
Odsłony: 892

Re: Niepoprawne zadanie

Więcej wiary w swoją wiedzę, w tej wersji to nieprawda skoro nie działa dla jedynki i już.
autor: Rafsaf
6 lis 2019, o 19:33
Forum: Kombinatoryka i matematyka dyskretna
Temat: Niepoprawne zadanie
Odpowiedzi: 5
Odsłony: 892

Re: Niepoprawne zadanie

A jak brzmi Twoje pytanie w związku z tym? Może być ciężko to udowodnić w takim razie :)
autor: Rafsaf
6 lis 2019, o 19:21
Forum: Kombinatoryka i matematyka dyskretna
Temat: podzielność - ile jest liczb niepodzielnych przez 2,6,8
Odpowiedzi: 7
Odsłony: 1416

Re: podzielność - ile jest liczb niepodzielnych przez 2,6,8

n(A \cap B)=166\\
n(A \cap C)=125\\
n(B \cap C)=41\\
n(A \cap B \cap C)=20\\

Pomysł jest dobry, tak należy to zadanie robić(czyli zasada włączeń i wyłączeń), ale obliczenia powyżej są bez większego sensu.
Jakbyś przypatrzył się bliżej temu co liczyłeś to zauważyłbyś że taki np. napis:

n(A ...
autor: Rafsaf
13 cze 2019, o 22:48
Forum: Topologia
Temat: Zbadaj otwartość zbioru
Odpowiedzi: 8
Odsłony: 1693

Re: Zbadaj otwartość zbioru

Domkniętość nie ma wpływu na otwartość, te pojęcie nie mają ze sobą takiego związku i trzeba je rozpatrzeć osobno

A jest domknięty
Można jeszcze inaczej pokazać domkniętość tego zbioru tzn. z definicji, pokazać że dopełnienie A jest otwarte, weźmy dowolną funkcję g \not\in A Wtedy g(0) \neq 0 ...
autor: Rafsaf
8 cze 2019, o 18:02
Forum: Topologia
Temat: Topologia strzałki
Odpowiedzi: 15
Odsłony: 2580

Re: Topologia strzałki

OK, rozumiem.

Z tymże to wygląda bardziej na niedbałe/bez zastanowienia napisane przez autora polecenie aniżeli dokładne przepisanie zadania z "niezręcznie" sformułowaną treścią choćby dlatego że treści tutaj właściwie nie ma, jest samodzielnie wymyślone pytanie i literki, cyferki z przykładu
autor: Rafsaf
8 cze 2019, o 15:30
Forum: Topologia
Temat: Topologia strzałki
Odpowiedzi: 15
Odsłony: 2580

Topologia strzałki

Jak pokazać, że zbiór pusty oraz cała przestrzeń należy do topologii strzałki?


Dowód:
Zauważmy że topologia strzałki w szczególności jest topologią. Stąd z aksjomatu(zwyczajowo pierwszego, są dwa inne) o tym że zbiór pusty i cała przestrzeń należą do każdej topologii, mamy tezę. Koniec.

Nawet ...
autor: Rafsaf
7 cze 2019, o 22:46
Forum: Topologia
Temat: Pytanie dot. dowodu tw. przeciwobrazie funkcji ciągłej
Odpowiedzi: 7
Odsłony: 1664

Pytanie dot. dowodu tw. przeciwobrazie funkcji ciągłej

Podejrzewam że autorowi mniej lub bardziej świadomie chodziło o przestrzenie metryczne bo w topologii ogólnej o ciągach by raczej nie wspominał w tym kontekście, są zdradzieckie

(X,d) oraz (Y, \rho) niech będą przestrzeniami metrycznymi zaś f: X \rightarrow Y ciągła. Wtedy NWSR:

a) funkcja jest ...
autor: Rafsaf
2 cze 2019, o 20:16
Forum: Topologia
Temat: Przestrzeń normalna
Odpowiedzi: 1
Odsłony: 716

Przestrzeń normalna

Męczę się nad próbą dowodu że podprzestrzeń typu F_{\sigma} przestrzeni normalnej też jest normalna. Ze wskazówki trzeba skorzystać z lematu:
Jeśli w X \in T_1 dla dowolnego domkniętego F i otwartego W że F \subseteq W istnieją W_1,W_2, ... że F \subseteq \bigcup _{i=1}^{\infty}W_i oraz \overline{W ...
autor: Rafsaf
30 maja 2019, o 23:32
Forum: Algebra liniowa
Temat: Postac kanoniczna formy kwadratowej
Odpowiedzi: 10
Odsłony: 1511

Re: Postac kanoniczna formy kwadratowej

Przeczytałeś co napisałem?

Napisałem co zostało zrobione źle, gdzie był błąd w rozumowaniu...

Otóż w sposób jak myślałem przystępny(jak widać myliłem się), zasygnalizowałem, że w ogólności
istnieje \(\displaystyle{ \neq}\) dla każdego
autor: Rafsaf
29 maja 2019, o 22:48
Forum: Algebra liniowa
Temat: Postac kanoniczna formy kwadratowej
Odpowiedzi: 10
Odsłony: 1511

Re: Postac kanoniczna formy kwadratowej

Dlaczego powinny być ortogonalne? Pokażę na innym, może prostszym przykładzie co zrobiłaś:

Wyobraź sobie przestrzeń \(\displaystyle{ \RR ^{3}}\).
Wybrałaś randomowo, całkowicie byle jak trzy liniowo niezależne wektory z tej przestrzeni. Dlaczego miały by one wszystkie być do siebie prostopadłe?
autor: Rafsaf
29 maja 2019, o 22:33
Forum: Własności i granice ciągów
Temat: Obliczanie granicy metodą całki oznaczonej
Odpowiedzi: 5
Odsłony: 1957

Obliczanie granicy metodą całki oznaczonej



Skąd wiemy, że ten przedział jest równy [0,1]


W sumie to nie wiemy
Tak jest wygodnie, możemy wtedy brutalnie uznać każde(tutaj jest jedno) \frac{k}{n} z sumy jako x w całce do której to dąży i będzie działało.

Ale nic nie stoi na przeszkodzie by całkować po przedziale \left[ 1,2\right] czy ...
autor: Rafsaf
29 maja 2019, o 20:13
Forum: Przekształcenia algebraiczne
Temat: Rozkład wyrażenia
Odpowiedzi: 1
Odsłony: 888

Rozkład wyrażenia

Najlepiej podejść do tego systematycznie zajmując się po kolei kolejnymi zmiennymi, ja zacznę od iksów

x ^{2}+2xy-4xz+2yz+z ^{2}=
=(x ^{2}+2xy-4xz)+2yz+z ^{2}=
=\left( (x+y-2z)^2 - y^2 - 4z^2 + 4yz\right) +2yz +z^2 = ...

Co się stało? To czysta automatyka, myśleć nie trzeba wcale, stawiam ...