Znaleziono 113 wyników

autor: Suvi
19 cze 2011, o 21:36
Forum: Prawdopodobieństwo
Temat: zbieżność w L2 implikuje zbieżność momentów.
Odpowiedzi: 0
Odsłony: 586

zbieżność w L2 implikuje zbieżność momentów.

Witam! Mam mały problem ze zbieżnościami.
Wiemy, że:

\(\displaystyle{ X{n}\overset{L_{2}}{ \rightarrow }X}\).

Chciałabym udowodnić, że:
1) \(\displaystyle{ \lim_{ n\to \infty } E(X_{n}) = E(X)}\),

2) \(\displaystyle{ \lim_{ n\to \infty } Var(X_{n}) = Var(X)}\).


Pozdrawiam.
autor: Suvi
16 maja 2010, o 14:46
Forum: Prawdopodobieństwo
Temat: rozkład zmiennej losowej X z parametrem
Odpowiedzi: 4
Odsłony: 811

rozkład zmiennej losowej X z parametrem

A czy \(\displaystyle{ F(-1)}\) to nie będzie 0? wtedy odpowiedzią do 2c) powinno byc \(\displaystyle{ 1-e^{-2}}\)?
autor: Suvi
1 maja 2009, o 19:48
Forum: Granica i ciągłość funkcji
Temat: granice funkcji 2 zmiennych
Odpowiedzi: 4
Odsłony: 817

granice funkcji 2 zmiennych

zazwyczaj liczysz granice iterowane
czyli na przykład:
\lim_{ x\to0 } \lim_{y \to 0} \frac{x}{x+y}= \lim_{ x\to0 }\frac{x}{x}=1 \\
\lim_{y \to 0} \lim_{ x\to0 }\frac{x}{x+y}= \lim_{y \to 0}\frac{0}{y}=0

Jeśli te granice wychodzą różne to to wystarcza, żeby stwierdzić, że granica w danym punkcie ...
autor: Suvi
19 lut 2009, o 22:24
Forum: Zbiory. Teoria mnogości
Temat: Złożenie dwuch funkcji (sprawdzenie)
Odpowiedzi: 7
Odsłony: 688

Złożenie dwuch funkcji (sprawdzenie)

owszem, można:) chodziło mi o sprawdzenie przeciwdziedziny f, żeby wiedzieć co z czym połączyć.
autor: Suvi
19 lut 2009, o 22:04
Forum: Zbiory. Teoria mnogości
Temat: Złożenie dwuch funkcji (sprawdzenie)
Odpowiedzi: 7
Odsłony: 688

Złożenie dwuch funkcji (sprawdzenie)

nie wiem co Ty tu zrobiłeś. moim zdaniem źle.
warunkiem na złożenie jest to, żeby zbiór wartości f zawierał się w dziedzinie g, a Ty tego nie wykorzystałeś, tylko tak dziwnie skleiłeś te funkcje.
autor: Suvi
18 lut 2009, o 23:31
Forum: Zbiory. Teoria mnogości
Temat: Zbiór liczb wymiernych pewnej postaci - zbiorem gęstym w R
Odpowiedzi: 6
Odsłony: 1936

Zbiór liczb wymiernych pewnej postaci - zbiorem gęstym w R

1) Niech x>y>0
Weźmy dowolne n \in N takie że
2^n>\frac{2}{(x-y)}\\
2^nx-2^ny>2\\
2^nx>2+2^ny \ge 1+\lfloor2^ny\rfloor>2^ny \\
x>\frac{1+\lfloor2^ny\rfloor}{2^n}>y
zauważmy, że 1+\lfloor2^ny\rfloor \in Z
2) x>0>y , tu liczba 0.
3) 0>x>y
weźmy x'=|x|, y'=|y| . Wtedy szukana liczba to -\frac{1 ...
autor: Suvi
18 lut 2009, o 22:49
Forum: Zbiory. Teoria mnogości
Temat: moce zbiorów
Odpowiedzi: 4
Odsłony: 807

moce zbiorów

\(\displaystyle{ |N| \ge |\lbrace0,1,2\rbrace| \ge |\lbrace0,1\rbrace|}\)
zatem:
\(\displaystyle{ |N^\mathbb{N}| \ge |\lbrace0,1,2\rbrace^\mathbb{N}| \ge |\lbrace0,1\rbrace^\mathbb{N}|}\)
autor: Suvi
18 lut 2009, o 19:27
Forum: Zbiory. Teoria mnogości
Temat: moc RxR
Odpowiedzi: 4
Odsłony: 1289

moc RxR

a mnie się wydaje, że najkrótszy i najładniejszy dowód tego to skorzystanie z faktu, że: |R|=|\lbrace0,1\rbrace^N|=|\lbrace0,1\rbrace^{N\backslash P}|=|\lbrace0,1\rbrace^P| .
N - naturalne, P - parzyste:)
następnie wiemy przy założeniach B \cap C=\emptyset że A^B \times A^C \sim A^{B \cup C ...
autor: Suvi
2 lut 2009, o 22:16
Forum: Granica i ciągłość funkcji
Temat: dowód tw. o przedłużaniu funkcji jednostajnie ciągłej
Odpowiedzi: 0
Odsłony: 465

dowód tw. o przedłużaniu funkcji jednostajnie ciągłej

Tw. Funkcja na zbiorze ograniczonym jest jednostajnie ciągła wtw, gdy istnieje jej przedłużenie F do funkcji ciągłej na domknięciu dziedziny.

Bardzo proszę kogoś o dowód tego twierdzenia.
autor: Suvi
10 lis 2008, o 17:42
Forum: Własności i granice ciągów
Temat: granice ciągów
Odpowiedzi: 39
Odsłony: 2315

granice ciągów

\lim_{ n\to \infty } (\sqrt{n+6\sqrt{n}+1}-\sqrt{n^2-2n})=

\lim_{ n\to\infty }\frac{n+6\sqrt{n}+1-n^2+2n} {\sqrt{n+6\sqrt{n}+1}+\sqrt{n^2-2n}}=
\lim_{ n\to \infty }\frac {-n^2+3n+6\sqrt{n}+1} {n(\sqrt{\frac{1}{n}+\frac{6\sqrt{n}}{n^2}+\frac{1}{n^2}}+\sqrt{1-\frac{2}{n}})}=



\lim_{ n\to ...
autor: Suvi
10 lis 2008, o 16:33
Forum: Własności i granice ciągów
Temat: granice ciągów
Odpowiedzi: 39
Odsłony: 2315

granice ciągów

tak, tak poprawiłam już
autor: Suvi
10 lis 2008, o 15:44
Forum: Własności i granice ciągów
Temat: Granica ciagu
Odpowiedzi: 9
Odsłony: 784

Granica ciagu

Zordon pisze:
tomcio_x pisze:a takie lamerskie pytanie...

po czym poznac, ze mam sie nie obawiac? Nie czuje tych granic... :[
Jak juz nie ma dzielenia przez zero, to zazwyczaj jest ok
ee tam. dzielenie przez 0 w granicach jest czasami całkiem ok.

tomcio_x może po prostu zapoznaj się z symbolami nieoznaczonymi?;p
autor: Suvi
10 lis 2008, o 15:35
Forum: Własności i granice ciągów
Temat: granice ciągów
Odpowiedzi: 39
Odsłony: 2315

granice ciągów

\(\displaystyle{ \lim_{ n\to\infty } \sqrt[n+2]{3^n+4^{n+2}}=4}\)
bo:

\(\displaystyle{ \sqrt[n+2]{4^{n+2}} \leqslant \sqrt[n+2]{3^n+4^{n+2}} \leqslant \sqrt[n+2]{2\cdot4^{n+2}}}\)

\(\displaystyle{ \sqrt[n+2]{4^{n+2}}=4}\)
\(\displaystyle{ \sqrt[n+2]{2\cdot4^{n+2}}=4\cdot\sqrt[n+2]{2} \rightarrow 4}\)
autor: Suvi
10 lis 2008, o 14:57
Forum: Własności i granice ciągów
Temat: Granica ciagu
Odpowiedzi: 9
Odsłony: 784

Granica ciagu

\(\displaystyle{ \lim_{n\rightarrow\infty}{\frac{n}{n+\sqrt[3]{n^{3}+1}}}=
\lim_{n\rightarrow\infty}{\frac{n}{n+n\sqrt[3]{1+\frac{1}{n^3}}}}=
\lim_{n\rightarrow\infty}{\frac{1}{1+\sqrt[3]{1+\frac{1}{n^3}}}}=
\frac{1}{2}}\)
autor: Suvi
9 lis 2008, o 20:58
Forum: Własności i granice ciągów
Temat: Oblicz granicę ciągu
Odpowiedzi: 7
Odsłony: 667

Oblicz granicę ciągu

hmm.. na chłopski rozum można stwierdzić że wykres \(\displaystyle{ f(n)=7^n}\) rośnie szybciej i jest ponad wykresem \(\displaystyle{ f(n)=n}\).. ;D

a mniej łopatologicznie można dowieść to z indukcji.