Znaleziono 20 wyników

autor: brzydkadelta
23 kwie 2016, o 17:17
Forum: Inne konkursy ogólnopolskie
Temat: IX edycja Olimpiady "O Diamentowy Indeks AGH"
Odpowiedzi: 115
Odsłony: 38708

IX edycja Olimpiady "O Diamentowy Indeks AGH"

Na stronie AGH są zdjęcia z uroczystości z poprzednich lat.

Czy otrzymaliście jakiegoś maila od organizatorów po wysłaniu formularza?
autor: brzydkadelta
28 lis 2015, o 20:18
Forum: Przekształcenia algebraiczne
Temat: Suma przedziałów
Odpowiedzi: 2
Odsłony: 630

Suma przedziałów

Czy z:

x^2 \in (- \infty, 1\rangle \cup \langle 3, \infty)

można przejść do:

\begin{cases} x^2 \le 1\\ x^2 \ge 3\end{cases}

a nastepnie do:

\begin{cases} x \le 1 \vee x \ge -1\\ x \ge \sqrt{3} \vee x \le - \sqrt{3} \end{cases}

no i przejście do czterech układów. Tylko pytanie czy ...
autor: brzydkadelta
3 paź 2015, o 15:19
Forum: Funkcje logarytmiczne i wykładnicze
Temat: Logarytmowanie stronami
Odpowiedzi: 2
Odsłony: 4853

Logarytmowanie stronami

Która forma logarytmowania jest poprawna:

\(\displaystyle{ a + b + c = d / \log}\)

\(\displaystyle{ A: \log a + \log b + \log c = \log d \\
B: \log (a + b + c) = \log d}\)


Jak tak patrzę to więcej sensu wydaje się mieć wersja B, jednak chce się upewnić.
autor: brzydkadelta
1 wrz 2015, o 16:57
Forum: Funkcje logarytmiczne i wykładnicze
Temat: Rozwiąż równanie
Odpowiedzi: 5
Odsłony: 869

Rozwiąż równanie

Chewbacca97 jezuuu no tak. :EEEEEEEEEEEEEE dzięki
autor: brzydkadelta
1 wrz 2015, o 16:44
Forum: Funkcje logarytmiczne i wykładnicze
Temat: Rozwiąż równanie
Odpowiedzi: 5
Odsłony: 869

Rozwiąż równanie

Przenies na jedna strone potege o podstawie 5 a na druga potege o podstawie 3. Wylacz wspolny czynnik przed nawias, a pozniej uszereguj to tak jak przy rozwiazywaniu zwyklego rownania.

Wyszlo 4

5^{\log _{2} \left( x \right) } \left[ 1 + \frac{1}{5} \right] = 3^{\log _{2} \left( x \right ...
autor: brzydkadelta
1 wrz 2015, o 16:07
Forum: Funkcje logarytmiczne i wykładnicze
Temat: Rozwiąż równanie
Odpowiedzi: 5
Odsłony: 869

Rozwiąż równanie

\(\displaystyle{ 5^{\log _{2}(x)} - 3^{\log _{2}(x) - 1} = 3^{\log _{2}(x) + 1} - 5^{\log _{2}(x) - 1}}\)
autor: brzydkadelta
29 sie 2015, o 12:10
Forum: Funkcje logarytmiczne i wykładnicze
Temat: Znajdź zbiór rozwiązań nierówności
Odpowiedzi: 2
Odsłony: 1019

Znajdź zbiór rozwiązań nierówności

\(\displaystyle{ \frac{ \sqrt{2}}{2} < \left(\frac{1}{2} \right)^{|\cos x|} < 1}\) w przedziale \(\displaystyle{ \left\langle -\pi, \pi \right\rangle}\)
autor: brzydkadelta
10 sie 2015, o 10:29
Forum: Ciąg arytmetyczny i geometryczny
Temat: Poziomy w naczyniach
Odpowiedzi: 1
Odsłony: 2039

Poziomy w naczyniach

Mamy na stole dwa jednakowe naczynia, każde o pojemności 77l. Jedno jest pełne, drugie puste. Z pełnego naczynia wypływają w pierwszej sekundzie 4l, a w każdej następnej o 0.2l mniej niz w poprzedniej. Jednocześnie do drugiego naczynia wlewa się w pierwszej sekundzie 1.5l a w każdej następnej o 0.5 ...
autor: brzydkadelta
8 sie 2015, o 22:01
Forum: Przekształcenia algebraiczne
Temat: Rozwiąż równanie
Odpowiedzi: 11
Odsłony: 1384

Rozwiąż równanie

Nakahed90, zaraz zaraz, przez ten upał trochę namieszałem. Przecież q wcale nie musli należeć do (-1;1), bo to jest ciąg geometryczny, a nie szereg?
autor: brzydkadelta
8 sie 2015, o 18:38
Forum: Przekształcenia algebraiczne
Temat: Rozwiąż równanie
Odpowiedzi: 11
Odsłony: 1384

Rozwiąż równanie

\(\displaystyle{ L = \lim_{n \to \infty} (log_{8}x \frac{1-log_{8}^{n}x}{1-log_{8}x})}\)
\(\displaystyle{ P = \frac{1}{2}}\)
co tu najlepiej wyjąć?
autor: brzydkadelta
8 sie 2015, o 18:16
Forum: Przekształcenia algebraiczne
Temat: Rozwiąż równanie
Odpowiedzi: 11
Odsłony: 1384

Rozwiąż równanie

Noo iloczyn musi należeć do (-1;1)
\(\displaystyle{ \left\{\begin{array}{l}log_{8}x>-1\\log_{8}x<1 \end{array}}\)
\(\displaystyle{ x \in ( \frac{1}{8}; 8 )}\)
autor: brzydkadelta
8 sie 2015, o 18:01
Forum: Przekształcenia algebraiczne
Temat: Rozwiąż równanie
Odpowiedzi: 11
Odsłony: 1384

Rozwiąż równanie

\(\displaystyle{ \lim_{n \to \infty} (log_{8}x \frac{1-log_{8}^{n}x}{1-log_{8}x}) = \lim_{n \to \infty} (\frac{ \frac{n(1 + n)}{2}}{ n^{2}\sqrt{ 1 + \frac{4}{n ^{4}} } })}\)

???
autor: brzydkadelta
8 sie 2015, o 17:35
Forum: Przekształcenia algebraiczne
Temat: Rozwiąż równanie
Odpowiedzi: 11
Odsłony: 1384

Rozwiąż równanie

mortan517 pisze:Po prawej w mianowniku na pewno ma być \(\displaystyle{ x}\)? W liczniku masz ciąg arytmetyczny.
faktycznie, a to ze tam jest arytmetyczny to wiem. Bardziej chodzi mi o to co z lewą stroną.
autor: brzydkadelta
8 sie 2015, o 17:12
Forum: Przekształcenia algebraiczne
Temat: Rozwiąż równanie
Odpowiedzi: 11
Odsłony: 1384

Rozwiąż równanie

\lim_{n \to \infty} ( log_{8}x + log_{8}^{2}x + ... + log_{8}^{n}x) = \lim_{n \to \infty} (\frac{1 + 2 + 3 + ... + n}{ \sqrt{ n^{4} + 4} })

Co z prawa stroną? Gdzieś indziej widziałem jakieś rozwiązanie gdzie skrócono to do sumy szeregu, ale czy to nie powinna być suma ciągu geometrycznego? W ...
autor: brzydkadelta
17 lip 2015, o 12:04
Forum: Przekształcenia algebraiczne
Temat: Funkcja wymierna
Odpowiedzi: 2
Odsłony: 1688

Funkcja wymierna

Będzie jeszcze łatwiej bo zamiast \(\displaystyle{ \frac{a}{x}}\) powinno być \(\displaystyle{ \frac{x}{a}}\), mój błąd