Znaleziono 9 wyników
- 9 lut 2007, o 20:25
- Forum: Logika
- Temat: Rożnowartościowość na przedziale, bijekcja
- Odpowiedzi: 1
- Odsłony: 1359
Rożnowartościowość na przedziale, bijekcja
Chyba najłatwiej będzie po prostu zauważyć, że jest to funkcja kwadratowa i odwołać się do jej własności, czyli znaleźć sobie miejsca zerowe itd.
- 7 lut 2007, o 17:40
- Forum: Zbiory. Teoria mnogości
- Temat: Wskazać prawdziwe odpowiedzi
- Odpowiedzi: 7
- Odsłony: 1084
Wskazać prawdziwe odpowiedzi
a) i b) są chyba ok, ale c) i d) to już raczej nie
- 7 lut 2007, o 00:37
- Forum: Kombinatoryka i matematyka dyskretna
- Temat: udowodnic
- Odpowiedzi: 1
- Odsłony: 650
udowodnic
\(\displaystyle{ P(B|A)=\frac{P({A}\cap{B})}{P(A)}=(\frac{P({A}\cap{B})}{P(B)})*\frac{P(B)}{P(A)}>P(A)*\frac{P(B)}{P(A)} =P(B)}\) co kończy dowód
Mam nadzieję, że nigdzie się nie pomyliłem
Mam nadzieję, że nigdzie się nie pomyliłem
- 1 lut 2007, o 09:21
- Forum: Rachunek różniczkowy
- Temat: Wyznaczyc wartosci parametru k
- Odpowiedzi: 1
- Odsłony: 574
Wyznaczyc wartosci parametru k
Czy na pewno to zadanie ma tak wyglądać? Chodzi mi o:
\(\displaystyle{ f(2)=x^{3}-x+log_{2}(k-2) - log_{2}(k+1)}\) ta dwójkę pod f? czy tam nie ma byc x? a skoro nie to od jakiej zmiennej jest ta funkcja? Aha i jeszcze jedno czy pod logarytmami nie ma byc żadnych zmiennych?
\(\displaystyle{ f(2)=x^{3}-x+log_{2}(k-2) - log_{2}(k+1)}\) ta dwójkę pod f? czy tam nie ma byc x? a skoro nie to od jakiej zmiennej jest ta funkcja? Aha i jeszcze jedno czy pod logarytmami nie ma byc żadnych zmiennych?
- 1 lut 2007, o 08:58
- Forum: Prawdopodobieństwo
- Temat: prawdopodobienstwo Master Mind
- Odpowiedzi: 4
- Odsłony: 4223
prawdopodobienstwo Master Mind
A jesteś pewna że ta odpowiedź \(\displaystyle{ (\frac{1}{7})^3}\) jest poprawna, bo mnie wyszło \(\displaystyle{ (\frac{1}{7})^4}\) tak samo jak beel'owi
- 31 sty 2007, o 23:47
- Forum: Prawdopodobieństwo
- Temat: Karty
- Odpowiedzi: 6
- Odsłony: 1119
Karty
Więc mamy tak:
pierwszy składnik licznika: załóżmy że wylosowaliśmy dwa króle czarne-możemy to zrobić tylko na 1 sposób, bo króli czarnych w talii kart są tylko 2 a następnie spośród 26 kart(tyle jest czerwonych) losujemy 3 karty. Ponieważ to jest jeden "eksperyment" więc mnożymy.
drugi składnik ...
pierwszy składnik licznika: załóżmy że wylosowaliśmy dwa króle czarne-możemy to zrobić tylko na 1 sposób, bo króli czarnych w talii kart są tylko 2 a następnie spośród 26 kart(tyle jest czerwonych) losujemy 3 karty. Ponieważ to jest jeden "eksperyment" więc mnożymy.
drugi składnik ...
- 31 sty 2007, o 23:29
- Forum: Kombinatoryka i matematyka dyskretna
- Temat: Ile 4-wyrazowych słów można utworzyć ze słowa Kooperac
- Odpowiedzi: 6
- Odsłony: 1259
Ile 4-wyrazowych słów można utworzyć ze słowa Kooperac
No ja w gruncie rzeczy jestem pewien swojego rozwiązania.
Jeśli masz odpowiedź do tego zadania to sprawdź wynik z moim rozwiązaniem-niestety ja nie mam obecnie dostępu do żadnego zbioru z takimi zadaniami.
Jeśli masz odpowiedź do tego zadania to sprawdź wynik z moim rozwiązaniem-niestety ja nie mam obecnie dostępu do żadnego zbioru z takimi zadaniami.
- 31 sty 2007, o 14:06
- Forum: Prawdopodobieństwo
- Temat: Karty
- Odpowiedzi: 6
- Odsłony: 1119
Karty
odpowiedz do pkt b)
\(\displaystyle{ \frac{1*{C^3_{26}}+2*2*{C^3_{25}}+1*{C^3_{24}}}{C^5_{25}}}\)
mam nadzieje że nie machnąłem się gdzieś w obliczeniach - lepiej jeszcze sobie sprawdzić
Pozdrawiam.
\(\displaystyle{ \frac{1*{C^3_{26}}+2*2*{C^3_{25}}+1*{C^3_{24}}}{C^5_{25}}}\)
mam nadzieje że nie machnąłem się gdzieś w obliczeniach - lepiej jeszcze sobie sprawdzić
Pozdrawiam.
- 31 sty 2007, o 13:48
- Forum: Kombinatoryka i matematyka dyskretna
- Temat: Ile 4-wyrazowych słów można utworzyć ze słowa Kooperac
- Odpowiedzi: 6
- Odsłony: 1259
Ile 4-wyrazowych słów można utworzyć ze słowa Kooperac
Hmm zauważcie, że powtarzają się litery: "a"-2x i "o"-2x Więc musimy wziąć to pod uwagę. O ile dobrze pamiętam to w liceum takie zadania się robiło tak:
Pierwszą literę możemy wybrać spośród 10, następną juz tylko spośród 9, nastepną z 8 i ostatnią z 7. Więc mamy: A:= 10*9*8*7 . Teraz jeszcze trzeba ...
Pierwszą literę możemy wybrać spośród 10, następną juz tylko spośród 9, nastepną z 8 i ostatnią z 7. Więc mamy: A:= 10*9*8*7 . Teraz jeszcze trzeba ...