Znaleziono 289 wyników

autor: ms7
1 gru 2018, o 16:48
Forum: Statystyka
Temat: Interpretacja odch. stand. i przedziałów ufności frakcji
Odpowiedzi: 4
Odsłony: 890

Re: Interpretacja odch. stand. i przedziałów ufności frakcji

W zasadzie tak, po prostu mam w excelu zbiór danych i pewną cechę zero-jedynkową. Frakcją jest odsetek jedynek.
autor: ms7
1 gru 2018, o 14:26
Forum: Statystyka
Temat: Interpretacja odch. stand. i przedziałów ufności frakcji
Odpowiedzi: 4
Odsłony: 890

Interpretacja odch. stand. i przedziałów ufności frakcji

Jaka jest interpretacja odchylenia standardowego frakcji?

W przypadku odchylenia standardowego średniej sprawa jest prosta, odchylenie mówi o ile przeciętnie odchylają się wartości badanej cechy od zmierzonej na ich podstawie średniej. Czyli dostajemy pewny obraz rozproszenia danych. Przedział ...
autor: ms7
11 maja 2018, o 12:25
Forum: Prawdopodobieństwo
Temat: Fryzjer, szewc, piekarz - proces Markowa
Odpowiedzi: 1
Odsłony: 423

Fryzjer, szewc, piekarz - proces Markowa

Proszę o pomoc w rozwiązaniu poniższego zadania.

W pewnym kraju syn fryzjera zostaje fryzjerem w połowie przypadków, piekarzem w jednej czwartej przypadków, a w pozostałych przypadkach zostaje szewcem. Syn piekarza nigdy nie zostaje fryzjerem. W jednej czwartej przypadków idzie śladami ojca, w ...
autor: ms7
10 kwie 2018, o 20:31
Forum: Analiza wyższa i funkcjonalna
Temat: Operator liniowy w przestrzeni Banacha
Odpowiedzi: 4
Odsłony: 941

Re: Operator liniowy w przestrzeni Banacha

Niech (X, Y) będzie przestrzenią Banacha. :p

Oczywiście miało być "niech X,Y będą przestrzeniami Banacha" .

Popróbowałem wykorzystać wskazówki i proszę o sprawdzenie czy jest okej i ewentualne poprawki.

(a \Rightarrow b) :

Weźmy dowolne x takie, że x_n \rightarrow x . Rozważmy ciąg x_n - x+x ...
autor: ms7
10 kwie 2018, o 16:23
Forum: Analiza wyższa i funkcjonalna
Temat: Operator liniowy w przestrzeni Banacha
Odpowiedzi: 4
Odsłony: 941

Operator liniowy w przestrzeni Banacha

Bardzo proszę o pomoc z poniższym zadaniem. Każda pomoc na wagę złota, bo nie wiem jak sie za to zabrać. Ewentualnie gdzie w literaturze znajdę ten dowód?

Niech (X, Y) będzie przestrzenią Banacha. Niech T: X \rightarrow Y będzie operatorem liniowym.
Pokazac rownowaznosc poniższych warunków:
a ...
autor: ms7
10 mar 2018, o 13:46
Forum: Prawdopodobieństwo
Temat: Proces stochastyczny - zależność zmiennych
Odpowiedzi: 0
Odsłony: 302

Proces stochastyczny - zależność zmiennych

Niech dany będzie proces \{X_t:~t \ge 0\} , który przyjmuje wartość 1 albo -1 . Przy czym X_0=1 .
Liczba zmian znaku N w przedziale (0,t) ma rozkład:
P(N=k)=e^{-\lamba t}\frac{(\lamda t)^k}{k!} .

Czy ktoś mógłby mi intuicyjnie wyjaśnić, dlaczego zmienne losowe X_t z procesu \{X_t:~t \ge 0\} nie są ...
autor: ms7
2 mar 2018, o 22:34
Forum: Analiza wyższa i funkcjonalna
Temat: Przestrzenie liniowe/unormowane - zależność
Odpowiedzi: 7
Odsłony: 1191

Re: Przestrzenie liniowe/unormowane - zależność

Dzięki, czyli ogólnie można powiedzieć, że w pewnym sensie przestrzeń unormowana to przestrzeń liniowa i vice versa?

No bo unormowana z definicji jest przestrzenią liniową, natomiast mając liniową mogę zawsze wprowadzić normę. Dobrze rozumiem?
autor: ms7
2 mar 2018, o 22:12
Forum: Analiza wyższa i funkcjonalna
Temat: Przestrzenie liniowe/unormowane - zależność
Odpowiedzi: 7
Odsłony: 1191

Re: Przestrzenie liniowe/unormowane - zależność

Z tego co napisał szw1710 wynika, że skoro każda przestrzeń unormowana jest metryzowalna, a ponadto istnieje przestrzeń liniowa niemetryzowalna, to musi istnieć przestrzń która jest liniowa ale nie jest unormowana.

Jak zatem odnieść to do:

Na każdej przestrzeni liniowej można zadać normę (pod ...
autor: ms7
2 mar 2018, o 16:04
Forum: Analiza wyższa i funkcjonalna
Temat: Przestrzenie liniowe/unormowane - zależność
Odpowiedzi: 7
Odsłony: 1191

Przestrzenie liniowe/unormowane - zależność

Czy istnieje przestrzeń liniowa w której nie da się określić normy? Innymi słowy, czy każda przestrzeń liniowa jest przestrzenią unormowaną?
autor: ms7
15 sty 2018, o 11:23
Forum: Prawdopodobieństwo
Temat: Typy zbieżności i tw. Lebesgue'a
Odpowiedzi: 1
Odsłony: 502

Typy zbieżności i tw. Lebesgue'a

Mam dwa problemy związane z zagadnieniami prawdopodobieństwa.

Pierwsza rzecz to zależność między zbieżnością według prawdopodobieństwa a zbieżnością w L^p .
Wiem, że jeśli ciąg zmiennych losowych jest zbieżny w L^p , to jest zbieżny według prawdopodobieństwa. I tu właśnie chciałbym dopytać o ...
autor: ms7
6 sty 2018, o 16:14
Forum: Statystyka
Temat: rozkład wykładniczy
Odpowiedzi: 4
Odsłony: 772

Re: rozkład wykładniczy

Ten wzór który podałaś to gęstość rozkładu wykładniczego z parametrem lambda.

W Twoim przypadku chcąc wyznaczyć wartość oczekiwaną, musisz policzyć coś takiego(po podstawieniu do wzoru który Ci podałem):
\(\displaystyle{ EX=\int_{0,4}^{0,6} 5x ~dx}\)
autor: ms7
6 sty 2018, o 15:52
Forum: Statystyka
Temat: rozkład wykładniczy
Odpowiedzi: 4
Odsłony: 772

Re: rozkład wykładniczy

Dla wartości oczekiwanej
\(\displaystyle{ E\Phi(X)=\int_\mathbb{R} \Phi(x)f(x) dx}\)

Zauważ że u Ciebie będzie to całka na odcinku \(\displaystyle{ [0,4; 0,6]}\)(tylko tutaj gęstość jest niezerowa), a \(\displaystyle{ \Phi(x)=x}\) bo \(\displaystyle{ \Phi(X)=X}\).
autor: ms7
6 sty 2018, o 15:17
Forum: Prawdopodobieństwo
Temat: Twierdzenie o trzech szeregach
Odpowiedzi: 1
Odsłony: 513

Twierdzenie o trzech szeregach

{X_n} –ciąg i.i.d. takich, że P(X_n=-n^4)=P(X_n=n^4)=\frac{1}{n^2},~P(X_n=0)=1-\frac{2}{n^2} .
Zbadać zbieżność szeregu \sum_{n=1}^\infty X_n .

Chcę zrobić to zadanie z tw. o trzech szeregach. Proszę o sprawdzenie części rozwiązania.

Ustalmy pewne c>0 . Definiuję:
X_n^c= \begin{cases} 0,~|X_n|>c ...
autor: ms7
4 lis 2017, o 12:16
Forum: Rachunek całkowy
Temat: Granice całkowania i funkcja charakterystyczna
Odpowiedzi: 0
Odsłony: 347

Granice całkowania i funkcja charakterystyczna

Czy poniższa całka jest dobrze przekształcona?

g(y)= \int\limits_{\mathbb{R}}\frac{1}{y} \cdot 1{\hskip -2.5 pt}\hbox{l}_{(0,1)}(x+\ln y) \cdot 1{\hskip -2.5 pt}\hbox{l}_{(0,1)}(x)~dx=1{\hskip -2.5 pt}\hbox{l}_{(e^{-1},e)}(y) \int_{- \ln y}^{1- \ln y} \frac{1}{y}~dx

Przejście między całkami ...
autor: ms7
21 paź 2017, o 21:37
Forum: Liczby zespolone
Temat: Równanie z sinusem
Odpowiedzi: 5
Odsłony: 893

Re: Równanie z sinusem

Dzięki Panowie, jutro będę działał