Znaleziono 226 wyników

autor: fryxjer
9 lut 2015, o 22:15
Forum: Algebra liniowa
Temat: Clem's Rule - przekształcenie macierzy
Odpowiedzi: 2
Odsłony: 148

Clem's Rule - przekształcenie macierzy

Oj tak tak, tam jest 1 1 1 1 - mój błąd. -- 9 lutego 2015, 23:50 -- Ok to jeszcze jedno pytanie z przekształcania macierzy,mam coś takiego: \left[\begin{array}{c}a\\b\\b\end{array}\right]=\left[\begin{array}{ccc}1&x_{1}&y_{1}\\1&x_{2}&y_{2}\\1&x_{3}&y_{3}\\\end{array}\right]^{-1}\left[\begin{array}{...
autor: fryxjer
9 lut 2015, o 21:40
Forum: Algebra liniowa
Temat: Clem's Rule - przekształcenie macierzy
Odpowiedzi: 2
Odsłony: 148

Clem's Rule - przekształcenie macierzy

Nie rozumiem takiego przekształcenia: \left[\begin{array}{c}u_{K}\\u_{M}\\u_{N}\\u_{L}\end{array}\right]^{T}=\left[\begin{array}{c}a\\b\\c\\d\end{array}\right]^{T}\left[\begin{array}{cccc}1&2&3&4\\x_{K}&x_{M}&x_{N}&x_{L}\\y_{K}&y_{M}&y_{N}&y_{L}\\z_{K}&z_{M}&z_{N}&z_{L}\end{array}\right] Mam napisan...
autor: fryxjer
24 lut 2013, o 06:08
Forum: Prawdopodobieństwo
Temat: prawdopodobieństwo warunkowe
Odpowiedzi: 1
Odsłony: 236

prawdopodobieństwo warunkowe

Wylosowano pięciocyfrowy numer. Jaka jest szansa, że zawiera on dokładnie dwie cyfry 2, jeśli wiadomo, że na przedostatniej pozycji znajduję się cyfra 1 ? (dopuszczamy numery zaczynające się od 0).
autor: fryxjer
24 lut 2013, o 06:06
Forum: Kombinatoryka i matematyka dyskretna
Temat: Wzór jawny na n-ty wyraz ciągu określonego rekurencją
Odpowiedzi: 1
Odsłony: 264

Wzór jawny na n-ty wyraz ciągu określonego rekurencją

\begin{cases} a_{0}=1 \\ a_{1}=2 \\ a_{n+2}=2a_{n+1}+3a_{n} \end{cases} Mogę tak sobie to zrobić: a_{k}=a_{n+2} a_{k}=2a_{k-1}+3a_{k-2} itd. a potem sobie zamienić z powrotem? Czy tutaj się robi jakoś inaczej? bo z tego wychodzi a_{n+2}=\frac{1}{4}(-1)^{n+2}+\frac{1}{4}(3)^{n+2} i z tego a_{n} ??
autor: fryxjer
23 lut 2013, o 19:11
Forum: Prawdopodobieństwo
Temat: losowanie cyfr/rzuty kostkami
Odpowiedzi: 3
Odsłony: 241

losowanie cyfr/rzuty kostkami

2) tzn \(\displaystyle{ |A|=V_{6}^{1}*V_{5}^{1}*V_{4}^{1}}\)
?
autor: fryxjer
23 lut 2013, o 15:42
Forum: Prawdopodobieństwo
Temat: losowanie cyfr/rzuty kostkami
Odpowiedzi: 3
Odsłony: 241

losowanie cyfr/rzuty kostkami

Ze zbioru liczb {1,2,5,6,7,9} losujemy dwie różne cyfry i tworzymy z nich liczbę. Jakie jest prawdopodobieństwo, że wylosujemy nieparzystą? Mam takie rozwiązanie: |\Omega| = |V_{6}^{2}|=30 to rozumiem, ale dalej mam: |A|=5*4=20 I nie mogę sobie przypomnieć dlaczego akurat takie równanie mam do A. 2 ...
autor: fryxjer
11 lut 2013, o 15:26
Forum: Indukcja matematyczna
Temat: Udowodnij nierówność z zasady indukcji
Odpowiedzi: 4
Odsłony: 414

Udowodnij nierówność z zasady indukcji

Na to też muszę dowód przeprowadzić, czy jak to sprawdzić?
autor: fryxjer
10 lut 2013, o 00:36
Forum: Indukcja matematyczna
Temat: Wielokrotność dziesiątki
Odpowiedzi: 5
Odsłony: 416

Wielokrotność dziesiątki

robie tak:
\(\displaystyle{ n^{5}-n=10k}\)

\(\displaystyle{ ( n+1)^{5} - ( n+1 ) = 10l}\)

\(\displaystyle{ k,l \in \mathbb N}\)

i przeprowadzam dowód z tego drugiego i wychodzi mi:
\(\displaystyle{ 5 ( 2k+n^{4}+2n^{3}+2n^{2}+n)}\)
i to jest dowód, że liczba jest podzielna przez 10? Czy coś źle robię?
autor: fryxjer
10 lut 2013, o 00:02
Forum: Indukcja matematyczna
Temat: Wielokrotność dziesiątki
Odpowiedzi: 5
Odsłony: 416

Wielokrotność dziesiątki

A jak udowodnić z zasady indukcji to co napisałem wcześniej tj. :
\(\displaystyle{ 10 | \left( n^{5}-n \right)^{20}}\)
bo o to głównie mi chodzi
PS. przepraszam za złe sformułowanie tematu
autor: fryxjer
9 lut 2013, o 23:59
Forum: Indukcja matematyczna
Temat: Udowodnij nierówność z zasady indukcji
Odpowiedzi: 4
Odsłony: 414

Udowodnij nierówność z zasady indukcji

1) 2^{n-1} \le n! dla n \in \mathbb_{N} 2) \sum_{i=1}^{n} \frac{1}{\sqrt{i}} \le 2\sqrt{n} -1 dla n \in \mathbb_{N} -- 10 lutego 2013, 11:51 --1) Sprawdzam dla n=1 2^{0} \le 1 zakładam że 2^{k-1} \le k! dla k \in \mathbb_{N} teza 2^{(k+1)-1} \le (k+1)! dowód L=2 \cdot 2^{k-1} \le 2k! P=(k+1)! i co d...
autor: fryxjer
9 lut 2013, o 23:40
Forum: Indukcja matematyczna
Temat: Wielokrotność dziesiątki
Odpowiedzi: 5
Odsłony: 416

Wielokrotność dziesiątki

\(\displaystyle{ 2341^{100}-2341^{20}}\) jest wielokrotnością \(\displaystyle{ 10}\)
i dochodzę do momentu
\(\displaystyle{ \left( n^{5}-n \right)^{20}}\)
i dalej nie wiem jak to robić? Nie wiem czy dobrze to zapisałem
autor: fryxjer
9 lut 2013, o 21:49
Forum: Zbiory. Teoria mnogości
Temat: czy równości zbiorów zachodzą/wypisać elementy zbioru
Odpowiedzi: 5
Odsłony: 372

czy równości zbiorów zachodzą/wypisać elementy zbioru

Okej, czyli np a=\left\{1\right\} i B=\left\{2\right\} ? Mam jeszcze takie zadanko: A=\left\{x \in \mathbb{N} : |x-4| \le 5 \right\} , B=\left\{y \in \mathbb{Z} : 4 \le x^{2} + \left( y-2 \right) ^{2} \le 26 \right\},C=\left\{ (a,b) \in \left\{ -2,-1,1,3 \right\} \times \left\{ -2,-1,1 \right\} : a^...
autor: fryxjer
9 lut 2013, o 21:15
Forum: Kombinatoryka i matematyka dyskretna
Temat: kombinacje bez powtórzeniami
Odpowiedzi: 2
Odsłony: 239

kombinacje bez powtórzeniami

wyjdzie na to samo
Spoko dzięki
autor: fryxjer
9 lut 2013, o 21:01
Forum: Kombinatoryka i matematyka dyskretna
Temat: kombinacje bez powtórzeniami
Odpowiedzi: 2
Odsłony: 239

kombinacje bez powtórzeniami

W sezonie rozegrano 306 meczy, każdy z każdym grał dwa razy, ile jest drużyn w lidze?
robię tak:
\(\displaystyle{ C^{2}_{n}= \frac{306}{2}}\)
Dobrze? Gdzie C to kombinacja bez powtórzeń
autor: fryxjer
9 lut 2013, o 17:48
Forum: Zbiory. Teoria mnogości
Temat: czy równości zbiorów zachodzą/wypisać elementy zbioru
Odpowiedzi: 5
Odsłony: 372

czy równości zbiorów zachodzą/wypisać elementy zbioru

To jest kontrprzykład rozumiem

Jeszcze jakby ktoś podpowiedział na temat drugiego zadania