Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Proste problemy dotyczące wzorów skróconego mnożenia, ułamków, proporcji oraz innych przekształceń.
Awatar użytkownika
vpprof
Użytkownik
Użytkownik
Posty: 492
Rejestracja: 11 paź 2012, o 11:20
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 26 razy
Pomógł: 64 razy

Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Post autor: vpprof »

Mam takie wyrażenie, które jest w zasadzie wielomianem, czy raczej szeregiem, nieważne:
\(\displaystyle{ k^k\left( k+2\right)^{k+1} - \left( k+1\right)^{2k+1}}\)
Chodzi o to, by wykazać, że dla \(\displaystyle{ k \in \ZZ_+}\) jest ono dodatnie.

Nie wiem, jak to zrobić; myślę, że warto byłoby je na początku jakoś ładniej zapisać, ale rozwijanie sum zdecydowanie nie prowadzi do prostszego i bardziej oczywistego zapisu… Może warto zastosować rachunek różnicowy? Ale kompletnie nie wiem jak.

EDIT: Może doprecyzuję, o co mi chodzi. Tak, chodzi o to, żeby to rozpisać. Tak, znam wzór na dwumian Newtona. Tylko że tu są skomplikowane wykładniki, więc współczynniki przy kolejnych potęgach \(\displaystyle{ k}\) będą się układały w jakiś wzór, który ciężko wyznaczyć na piechotę.
Ostatnio zmieniony 18 wrz 2016, o 20:46 przez vpprof, łącznie zmieniany 1 raz.
Majeskas
Użytkownik
Użytkownik
Posty: 1456
Rejestracja: 14 gru 2007, o 14:36
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 49 razy
Pomógł: 198 razy

Jak prosto zapisać wielomian

Post autor: Majeskas »

Chcemy udowodnić nierówność \(\displaystyle{ (k+1)^{2k+1}<k^k(k+2)^{k+1}}\). Przekształcamy ją do postaci

\(\displaystyle{ \left( \frac{k+1}{k+2}\right)^{k+1}<\left( \frac{k}{k+1}\right)^k}\)

\(\displaystyle{ \frac{k+1}{k+2}<\sqrt[k+1]{\left( \frac{k}{k+1}\right)^k}}\)

Prawa strona jest średnią geometryczną \(\displaystyle{ k+1}\) liczb: \(\displaystyle{ k}\) liczb \(\displaystyle{ \frac{k}{k+1}}\) i jednej jedynki. Średnia geometryczna jest zawsze nie mniejsza niż średnia harmoniczna. Obliczamy więc średnią harmoniczną tych liczb:

\(\displaystyle{ \frac{k+1}{1+k\cdot\frac{k}{k+1}}=\frac{k^2+2k+1}{k^2+k+1}=1+\frac{k}{k^2+k+1}}\)

Otrzymujemy

\(\displaystyle{ \frac{k+1}{k+2}=1-\frac1{k+2}<1+\frac{k}{k^2+k+1}\le\sqrt[k+1]{\left( \frac{k}{k+1}\right)^k}}\)

I już.
a4karo
Użytkownik
Użytkownik
Posty: 22292
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3768 razy

Jak prosto zapisać wielomian

Post autor: a4karo »

Można również wykorzystać znany fakt, że ciąg \(\displaystyle{ a_k=\left(1+\frac{1}{k}\right)^k}\) jest rosnący.

Dana nierówność jest równoważna takiej: \(\displaystyle{ a_k<a_{k+1}}\).

PS. spojrzałem na podpis vprof i na tekst
vprof pisze:Mam takie wyrażenie, które jest w zasadzie wielomianem, czy raczej szeregiem, nieważne:
i nasunęła mi się taka uwaga:

Znajomość terminów matematycznych nie zwalnia od poprawnego ich stosowania.
Awatar użytkownika
kinia7
Użytkownik
Użytkownik
Posty: 704
Rejestracja: 28 lis 2012, o 11:58
Płeć: Kobieta
Lokalizacja: Wrocław
Podziękował: 89 razy
Pomógł: 94 razy

Jak prosto zapisać wielomian

Post autor: kinia7 »

Majeskas pisze:Prawa strona jest średnią geometryczną \(\displaystyle{ k+1}\) liczb: \(\displaystyle{ k}\) liczb \(\displaystyle{ \frac{k}{k+1}}\) i jednej jedynki. Średnia geometryczna jest zawsze nie mniejsza niż średnia harmoniczna. Obliczamy więc średnią harmoniczną tych liczb:

\(\displaystyle{ \frac{k+1}{1+k\cdot\frac{k}{k+1}}=\frac{k^2+2k+1}{k^2+k+1}=1+\frac{k}{k^2+k+1}}\)
średnia harmoniczna tych liczb to:
\(\displaystyle{ \frac{k+1}{1+k\cdot\frac{k+1}{k}}=\red{\frac{k+1}{k+2}}}\)
Majeskas
Użytkownik
Użytkownik
Posty: 1456
Rejestracja: 14 gru 2007, o 14:36
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 49 razy
Pomógł: 198 razy

Jak prosto zapisać wielomian

Post autor: Majeskas »

Tak, tak, właśnie mi to przyszło do głowy, tylko nie miałem dostępu do Internetu, żeby poprawić

Mamy

\(\displaystyle{ \left( \frac{k+1}{k+2} \right)^{k+1}<\left( \frac{k}{k+1} \right)^k}\)

\(\displaystyle{ \left( \frac{k+2}{k+1} \right)^{k+1}>\left( \frac{k+1}{k} \right)^k}\)

\(\displaystyle{ \left( 1+\frac1{k+1} \right)^{k+1}>\left( 1+\frac{1}{k} \right)^k}\)

A to wynika - jak już wspomniano - z monotoniczności znanego ciągu \(\displaystyle{ \left( 1+\frac1n\right)^n}\), którą można uzasadnić właśnie ze średnich:

\(\displaystyle{ 1+\frac1{k+1}>\sqrt[k+1]{\left( 1+\frac{1}{k} \right)^k}}\)

Prawa strona to średnia geometryczna \(\displaystyle{ k}\) sztuk \(\displaystyle{ 1+\tfrac1k}\) i jednej jedynki. No to obliczmy średnią arytmetyczną:

\(\displaystyle{ \frac{1+k(1+\tfrac1k)}{k+1}=1+\frac1{k+1}}\)

Tak więc nasza nierówność to dokładnie nierówność między średnią arytmetyczną a geometryczną odpowiednio dobranych liczb. Pozostaje taki drobiazg, że czasem bywają równe, ale ma to miejsce tylko wtedy, gdy wszystkie liczby są równe, co oznaczałoby, że \(\displaystyle{ 1+\frac1k=1}\).

Mam nadzieję, że teraz nie ma błędu. Dzięki za czujność
Awatar użytkownika
vpprof
Użytkownik
Użytkownik
Posty: 492
Rejestracja: 11 paź 2012, o 11:20
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 26 razy
Pomógł: 64 razy

Jak prosto zapisać wielomian

Post autor: vpprof »

-----

OK, informacja dla czytających pierwszy raz: oryginalne zadanie rozwiązane, ale zmieniam polecenie na następujące.

Jakim wzorem wyraża się współczynnik przy \(\displaystyle{ k^n}\) dla dowolnego \(\displaystyle{ n \in \NN_0}\) w rozwinięciu wyrażenia:
\(\displaystyle{ k^k\left( k+2\right)^{k+1} - \left( k+1\right)^{2k+1}}\)

??


-----

Majeskas, dzięki, tak przeczuwałem, że da się z nierówności między średnimi, ale mimo wszystko chętnie poznałbym sposób rozwijania takich wyrażeń i obliczania współczynnika przy dowolnej potędze \(\displaystyle{ k}\).

kinia7, dzięki za czujność! Wychodzi na to, że prawa strona jest średnią geometryczną, a lewa — harmoniczną tych samych liczb.

a4karo,
a4karo pisze:Można również wykorzystać znany fakt, że ciąg \(\displaystyle{ a_k=\left(1+\frac{1}{k}\right)^k}\) jest rosnący.

Dana nierówność jest równoważna takiej: \(\displaystyle{ a_k<a_{k+1}}\).
Tak, tak, twoja intuicja matematyczna dobrze ci wskazuje, to jest część mojego dowodu indukcyjnego, że \(\displaystyle{ 2 \le a_k}\). Więc w tym wypadku raczej nie mogę tego znanego faktu, że \(\displaystyle{ a_k < a_{k+1}}\) wykorzystać
a4karo pisze:PS. spojrzałem na podpis vprof i na tekst
vprof pisze:Mam takie wyrażenie, które jest w zasadzie wielomianem, czy raczej szeregiem, nieważne:
i nasunęła mi się taka uwaga:

Znajomość terminów matematycznych nie zwalnia od poprawnego ich stosowania.
  1. przez 2 „p”, jeśli mogę prosić
  2. Jaką zatem nazwę na to wyrażenie z pierwszego posta uważasz za słuszną?
a4karo
Użytkownik
Użytkownik
Posty: 22292
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3768 razy

Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Post autor: a4karo »

Cóż... jako wyrażenie zmiennej \(\displaystyle{ k}\) nie jest toto ani wielomianem (bo nie ma ustalonego stopnia) ani tym bardziej szeregiem (to zupełnie inna bajka).
Jest to po prostu wyrażenie (nie wszystko w matematyce ma nazwę)

Przepraszam za pojedyncze "p".


PS To, że \(\displaystyle{ a_k\geq 2}\) wynika natychmiast z nierówności Bernoulliego
Awatar użytkownika
vpprof
Użytkownik
Użytkownik
Posty: 492
Rejestracja: 11 paź 2012, o 11:20
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 26 razy
Pomógł: 64 razy

Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Post autor: vpprof »

a4karo, o właśnie, przydała się porada kogoś bardziej doświadczonego.

Wiesz, po przemnożeniu jest to wyrażenie mające składniki, które można pogrupować według potęg \(\displaystyle{ k}\), czyli coś takiego: \(\displaystyle{ w_0+w_1k^1+w_2k^2+…+w_{2k+1}k^{2k+1}}\). Przy okazji, sprawdziłem już, że dla dowolnego \(\displaystyle{ k \in \NN_+}\) największą potęgą tego (s)tworu będzie właśnie \(\displaystyle{ 2k+1}\), zatem w pewnym sensie jest to coś podobnego do wielomianu o ustalonym stopniu.

A nie ma czegoś takiego jak szereg (potęgowy) skończony? Pewnie nie…
a4karo
Użytkownik
Użytkownik
Posty: 22292
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3768 razy

Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Post autor: a4karo »

Najwyższą potęga nie będzie \(\displaystyle{ 2k+1}\) - ten wyraz się zredukuje.
Awatar użytkownika
Cytryn
Użytkownik
Użytkownik
Posty: 405
Rejestracja: 17 wrz 2016, o 17:04
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 2 razy
Pomógł: 46 razy

Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Post autor: Cytryn »

Policzyć współczynnik przy \(\displaystyle{ x^n}\) w \(\displaystyle{ x^k\left( x+2\right)^{k+1} - \left( x+1\right)^{2k+1}}\)?

\(\displaystyle{ \sum_{t = 0}^{k+1} x^{k+t} 2^{k+1-t} - \sum_{t = 0}^{2k+1} x^t}\).

Wystarczy popatrzeć na oba składniki i odjąć, co trzeba.
Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 8596
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 307 razy
Pomógł: 3357 razy

Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Post autor: kerajs »

\(\displaystyle{ x^k\left( x+2\right)^{k+1} - \left( x+1\right)^{2k+1}=
\sum_{i = 1}^{k+1}\left[ {k+1 \choose i}2^i- {2k+1 \choose i} \right] x^{2k+1-i}+ \sum_{i = k+2}^{2k+1}\left[ - {2k+1 \choose i} \right] x^{2k+1-i}}\)
.
Awatar użytkownika
vpprof
Użytkownik
Użytkownik
Posty: 492
Rejestracja: 11 paź 2012, o 11:20
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 26 razy
Pomógł: 64 razy

Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Post autor: vpprof »

OK dzięki, już wszystko wiem!

Cytryn, uciekły ci symbole dwumianowe

a4karo, racja! Najwyższy będzie \(\displaystyle{ 2k}\) i będzie on równy \(\displaystyle{ 1}\).

kerajs, mi wyszło co innego, przede wszystkim dolna granica sumowania = 0:

\(\displaystyle{ \red{x^k} \blue{\left( x+2\right)^{k+1}} \green{ - \left( x+1\right)^{2k+1}}}\)

\(\displaystyle{ \red{x^k} \blue{ \sum_{i=0}^{k+1} {k+1 \choose i} 2^{k+1-i} x^i } \green{ - \sum_{i=0}^{2k+1} x^i }}\)

Z połączenia czerwonego i niebieskiego mam różowe:

\(\displaystyle{ \magenta{\sum_{i=0}^{k+1} {k+1 \choose i} 2^{k+1-i} x^{i+k} = \sum_{i=k}^{2k+1} {k+1 \choose i-k} 2^{2k+1-i} x^{i}}}\)

I teraz zielone rozbijam na dwie sumy, jedną od \(\displaystyle{ 0}\) do \(\displaystyle{ k-1}\) i drugą od \(\displaystyle{ k}\) do \(\displaystyle{ 2k+1}\). Sumuję w obrębie sum o tych samych granicach sumowania i ostatecznie mam:

\(\displaystyle{ \sum_{i=0}^{k-1} {2k+1 \choose i} x^i + \sum_{i=k}^{2k+1}
\left( {k+1 \choose i-k} 2^{2k+1-i} - {2k+1 \choose i} \right) x^i}\)
Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 8596
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 307 razy
Pomógł: 3357 razy

Jak obliczyć współczynnik przy dowolnej potędze zmiennej

Post autor: kerajs »

Raczej:
\(\displaystyle{ \red{-}\sum_{i=0}^{k-1} {2k+1 \choose i} x^i + \sum_{i=k}^{2k+1}
\left( {k+1 \choose i-k} 2^{2k+1-i} - {2k+1 \choose i} \right) x^i}\)

lub
\(\displaystyle{ \red{-}\sum_{i=0}^{k-1} {2k+1 \choose i} x^i + \sum_{i=k}^{\red{2k}}
\left( {k+1 \choose i-k} 2^{2k+1-i} - {2k+1 \choose i} \right) x^i}\)

bo wyrażenia z \(\displaystyle{ x^{2k+1}}\) się uproszczą.
Twoja suma ustawiona jest od wyrazu wolnego do najwyższej potęgi x.

Niech \(\displaystyle{ j=2k+1-i}\), to ostatni wzór zamienia się na

\(\displaystyle{ =-\sum_{j=2k+1}^{k+2} {2k+1 \choose 2k+1-j} x^{2k+1-j} + \sum_{j=k+1}^{1}
\left( {k+1 \choose k+1-j} 2^{j} - {2k+1 \choose 2k+1-j} \right) x^{2k+1-j}=}\)

\(\displaystyle{ =- \sum_{j=k+2}^{2k+1} {2k+1 \choose j}x^{2k+1-j}+ \sum_{j=1}^{k+1}\left[ {k+1 \choose j} 2^{j} - {2k+1 \choose j}\right]x^{2k+1-j} =}\)
\(\displaystyle{ = \sum_{j=1}^{k+1}\left[ {k+1 \choose j} 2^{j} - {2k+1 \choose j}\right]x^{2k+1-j} - \sum_{j=k+2}^{2k+1} {2k+1 \choose j}x^{2k+1-j}}\)

co daje wzór który napisałem w poprzednim poscie, a suma daje zwyczajowo ustawiony wielomian.

Ps
W przekształceniach wykorzystałem własność:
\(\displaystyle{ {n \choose n-k} = {n \choose k}}\)
ODPOWIEDZ