lokata

Osobny dział dla miłośników procentów.
MatU3x
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 16 maja 2020, o 13:40
Płeć: Mężczyzna
wiek: 20
Podziękował: 20 razy

lokata

Post autor: MatU3x »

Hej,
mam problem z takim zadaniem:
"Na roczną lokatę z kwartalną kapitalizacją odsetek wpłacono 5000 zł. Po upłynięciu terminu lokaty otrzymano 203,02 zł odsetek. Jakie było oprocentowanie lokaty w skali roku? "
Podstawiam do wzoru i wychodzi mi coś takiego:
\(\displaystyle{ 5000(1+ \frac{p}{100}) ^{4}=5203.02 }\)
dziele obie strony przez 5000, nastepnie mnoze razy \(\displaystyle{ \sqrt[4]{1}}\). Nastepnie wychodzi mi niestety wielkie nic bo doszedlem do wyniku \(\displaystyle{ 2\sqrt[4]{650}}\) co zaprowadziło mnie do nikąd. Prosiłbym o wyjasnienie gdzie popełniam bład i ewentualne wskazowki, pozdrawiam
piasek101
Użytkownik
Użytkownik
Posty: 23418
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski
Podziękował: 1 raz
Pomógł: 3240 razy

Re: lokata

Post autor: piasek101 »

Gdzie się mylisz nie wiemy - podaj poszczególne wyniki.

Patrz \(\displaystyle{ 5000\cdot 4\%=200}\)
Awatar użytkownika
kinia7
Użytkownik
Użytkownik
Posty: 696
Rejestracja: 28 lis 2012, o 11:58
Płeć: Kobieta
Lokalizacja: Wrocław
Podziękował: 89 razy
Pomógł: 93 razy

Re: lokata

Post autor: kinia7 »

Powinno być

\(\displaystyle{ 5000\left(1+ \frac{p}{4\cdot100}\right) ^{4}=5203.02\quad \Rightarrow \quad p \approx 4 }\)
MatU3x
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 16 maja 2020, o 13:40
Płeć: Mężczyzna
wiek: 20
Podziękował: 20 razy

Re: lokata

Post autor: MatU3x »

Widze teraz ze cos wczesniej pomylilem, ale w sumie to w tym miejscu gdzieś utknąłem:
\(\displaystyle{ 5000(1+ \frac{p}{100}) ^{4}=5203.02 }\)
Teraz mnoże
\(\displaystyle{ (1+ \frac{p}{100}) ^{4}=1.04 }\)
I tak na prawdę w tym miejscu nie mam pojęcia co zrobić, bo mnożyłem razy pierwiastek 4 stopnia:
\(\displaystyle{ (1+ \frac{p}{100}) ^{4}=1.04 //\cdot 100}\)
\(\displaystyle{ 100(1+ \frac{p}{100}) ^{4}=104 //\cdot \sqrt[4]{1}}\)
\(\displaystyle{ 100(1+ \frac{p}{100}) = \sqrt[4]{104}}\)
\(\displaystyle{ 100(1\cdot \frac{100}{100})+ \frac{p}{100}= \sqrt[4]{104} }\)
\(\displaystyle{ \frac{10000+p}{100}= \sqrt[4]{104}}\)
\(\displaystyle{ \frac{100(100+ \frac{1}{100}p )}{100}= \sqrt[4]{104} }\)

Dodano po 11 minutach 33 sekundach:
kinia7 pisze: 16 maja 2020, o 21:38 Powinno być

\(\displaystyle{ 5000\left(1+ \frac{p}{4\cdot100}\right) ^{4}=5203.02\quad \Rightarrow \quad p \approx 4 }\)
Dziekuje za odpowiedź, nie rozumiem natomiast skąd się wzięło \(\displaystyle{ 4\cdot }\) w mianowniku?
Ostatnio zmieniony 16 maja 2020, o 22:00 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Symbol mnożenia to \cdot.
piasek101
Użytkownik
Użytkownik
Posty: 23418
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski
Podziękował: 1 raz
Pomógł: 3240 razy

Re: lokata

Post autor: piasek101 »

Ty robisz dobrze - ale Twoje \(\displaystyle{ p}\) to będzie oprocentowanie kwartalne. Coś z tymi setkami kombinujesz.

\(\displaystyle{ \left(1+p\% \right)^4\approx 1,04}\) pierwiastkujemy
\(\displaystyle{ 1+p\% \approx 1,01}\)
\(\displaystyle{ p\%=1\%}\)
Jan Kraszewski
Administrator
Administrator
Posty: 32287
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 2 razy
Pomógł: 5068 razy

Re: lokata

Post autor: Jan Kraszewski »

MatU3x pisze: 16 maja 2020, o 21:53I tak naprawdę w tym miejscu nie mam pojęcia co zrobić, bo mnożyłem razy pierwiastek 4 stopnia:
Wyciągałeś pierwiastek czwartego stopnia (to nie jest mnożenie).
MatU3x pisze: 16 maja 2020, o 21:53\(\displaystyle{ (1+ \frac{p}{100}) ^{4}=1.04 //\cdot 100}\)
\(\displaystyle{ 100(1+ \frac{p}{100}) ^{4}=104 //\cdot \sqrt[4]{1}}\)
\(\displaystyle{ 100(1+ \frac{p}{100}) = \sqrt[4]{104}}\)
I właśnie pierwiastek wyciągasz niepoprawnie. Powinno być:

\(\displaystyle{ \sqrt[4]{100(1+ \frac{p}{100}) ^{4}}=\sqrt[4]{104}}\)
\(\displaystyle{ \sqrt{10}\cdot(1+ \frac{p}{100})=\sqrt[4]{104}}\)

Uwaga dotyczy Twoich przekształceń, a nie rozwiązania zadania.

JK
Awatar użytkownika
Niepokonana
Użytkownik
Użytkownik
Posty: 1395
Rejestracja: 4 sie 2019, o 11:12
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 325 razy
Pomógł: 12 razy

Re: lokata

Post autor: Niepokonana »

Nie znam się, ale się wypowiem.
Z tego, co przeczytałam, to jak masz kwartalną kapitalizację, to roczne oprocentowanie się dzieli na cztery. A jak masz miesięczną kapitalizację, to dzielisz roczne oprocentowanie przez 12 itd.

A tak w ogóle to czemu pomnożyłeś obie strony w pierwszym przykładzie przez pierwiastek czwartego stopnia z jedynki?
Ja nie ogarniam tego zadania. Te Wasze przekształcenia są dziwne.
MatU3x
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 16 maja 2020, o 13:40
Płeć: Mężczyzna
wiek: 20
Podziękował: 20 razy

Re: lokata

Post autor: MatU3x »

piasek101 pisze: 16 maja 2020, o 22:03 Ty robisz dobrze - ale Twoje \(\displaystyle{ p}\) to będzie oprocentowanie kwartalne. Coś z tymi setkami kombinujesz.

\(\displaystyle{ \left(1+p\% \right)^4\approx 1,04}\) pierwiastkujemy
\(\displaystyle{ 1+p\% \approx 1,01}\)
\(\displaystyle{ p\%=1\%}\)
Dziękuje, jestem w tym momencie
\(\displaystyle{ \left(1+p\% \right)^4\approx 1,04}\) pierwiastkujemy
nie rozumiem natomiast dlaczego nie ma tej 100 w mianowniku? Natomiast jeśli pierwiastkujemy to robimy to dwukrotnie? \(\displaystyle{ \sqrt[4]{1}= \sqrt{ \sqrt{1} } }\) Dobrze myślę?
Panu Janowi dziękuję za wyjaśnienie pierwiastków, rzeczywiście spojrzałem tylko na potęgi
piasek101
Użytkownik
Użytkownik
Posty: 23418
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski
Podziękował: 1 raz
Pomógł: 3240 razy

Re: lokata

Post autor: piasek101 »

\(\displaystyle{ \frac{p}{100}=p\%}\)

Pierwiastkujemy pierwiastkiem czwartego stopnia - czyli to tak jak piszesz pierwiastek i jeszcze raz pierwiastek (wyjdzie to co podałem).
MatU3x
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 16 maja 2020, o 13:40
Płeć: Mężczyzna
wiek: 20
Podziękował: 20 razy

Re: lokata

Post autor: MatU3x »

piasek101 pisze: 16 maja 2020, o 22:30 \(\displaystyle{ \frac{p}{100}=p\%}\)

Pierwiastkujemy pierwiastkiem czwartego stopnia - czyli to tak jak piszesz pierwiastek i jeszcze raz pierwiastek (wyjdzie to co podałem).
Jeszcze miałem dopytywać ale nareszcie dostałem olśnienia, nie spotkałem się wcześniej z taką zamianą jak p% albo po prostu nie wiedziałem ze tak to zapisuje ;) Jeszcze raz dziękuje za odpowiedzi
piasek101
Użytkownik
Użytkownik
Posty: 23418
Rejestracja: 8 kwie 2008, o 22:04
Płeć: Mężczyzna
Lokalizacja: piaski
Podziękował: 1 raz
Pomógł: 3240 razy

Re: lokata

Post autor: piasek101 »

To jeszcze zwrócę Ci uwagę na to, że w tablicach wzór na procent składany jest trochę niedopracowany - szczególnie chodzi o jego opis (nie jest błędny, ale może być mylący).
Mianowicie tam \(\displaystyle{ p}\) jest oprocentowaniem rocznym, natomiast \(\displaystyle{ n}\) jest ilością lat oszczędzania - a (patrz Twoje zadanie) wcale tak nie musi być.
ODPOWIEDZ