Całka z kosinusem

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 11415
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 3155 razy
Pomógł: 748 razy

Całka z kosinusem

Post autor: mol_ksiazkowy »

wyznaczyć \(\displaystyle{ \int_{-\infty}^{+\infty} \frac{\cos(x)}{x^4+x^2+1} dx}\)
Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 4076
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 80 razy
Pomógł: 1395 razy

Re: Całka z kosinusem

Post autor: Janusz Tracz »

wstępne blablabla:    
\begin{split}
\int_{-\infty}^{+\infty} \frac{\cos(\omega x)}{x^4+x^2+1} \, \dd x&= \int_{-\infty}^{+\infty} \frac{\Re \left( e^{i\omega x}\right) }{x^4+x^2+1} \, \dd x \\[2ex]
&=\Re \int_{-\infty}^{+\infty} \frac{e^{i\omega x}}{x^4+x^2+1} \, \dd x\\[2ex]
&=\Re \ \sqrt{2\pi} \times \mathscr{F} \Big( \frac{1}{\bullet^4+\bullet^2+1} \Big)(\omega)\\[2ex]
&=\Re \ \sqrt{2\pi} \times \Big( \mathscr{F} \Big( \sum_{k=1}^{4} \frac{A_k}{\bullet-\xi_k} \Big)\Big)(\omega) \\[2ex]
&=\Re \ \left[ 2\pi i \times \sum_{k=1}^{4} A_k e^{i \xi_k \omega } \, \textsf{sgn}(\Im(\xi_k)) {\sf{H}} \big(\omega \times \textsf{sgn}(\Im(\xi_k))\big)\right] \\[2ex]
&=\Re \, \left[ \frac{i \pi e^{-\frac{\sqrt{3}+i}{2} \omega}}{3 (\sqrt{3}-i)} \times \left(e^{\sqrt{3} \omega} \left(-2 \sqrt{3}+\left(\sqrt{3}-3 i\right) e^{i \omega}\right){\sf{H}} (-\omega)-\left(2 \sqrt{3} e^{i \omega}+3 i-\sqrt{3}\right) {\sf{H}} (\omega)\right)\right].
\end{split}
koniec:    
Awatar użytkownika
arek1357
Użytkownik
Użytkownik
Posty: 5749
Rejestracja: 6 gru 2006, o 09:18
Płeć: Mężczyzna
Lokalizacja: blisko
Podziękował: 131 razy
Pomógł: 526 razy

Re: Całka z kosinusem

Post autor: arek1357 »

Ja proponuję rozłożyć na ułamki proste i otrzymamy całki typu:

\(\displaystyle{ \int_{0}^{ \infty } \frac{\cos x}{x^2+ \frac{3}{4} } dx \wedge \int_{0}^{ \infty } \frac{\sin x}{x^2+ \frac{3}{4} } dx}\)

A to się dość dobrze całkuje biorąc funkcję:

np:

\(\displaystyle{ f(a)= \int_{0}^{ \infty } \frac{\cos ax}{x^2+ \frac{3}{4} } dx }\)

Dodano po 7 godzinach 39 minutach 38 sekundach:
Pierwszy rozkład:

\(\displaystyle{ \frac{1}{x^4+x^2+1} = \frac{1-x}{2(x^2-x+1)} + \frac{x+1}{2(x^2+x+1)}= \frac{1}{2} \cdot \frac{1}{x^2-x+1}- \frac{1}{2} \cdot \frac{x}{x^2-x+1} +\frac{1}{2} \cdot \frac{x}{x^2+x+1} +\frac{1}{2} \cdot \frac{1}{x^2+x+1}}\)

\(\displaystyle{ x^2-x+1=\left( x- \frac{1}{2}\right)^2+ \frac{3}{4} }\)

\(\displaystyle{ x^2+x+1=\left( x+ \frac{1}{2}\right)^2+ \frac{3}{4} }\)

Mamy więc całki po rozdzieleniu:

\(\displaystyle{ \frac{1}{2} \int_{- \infty }^{ \infty } \frac{\cos x}{\left( x- \frac{1}{2}\right)^2+ \frac{3}{4}} dx- \frac{1}{2} \int_{- \infty }^{ \infty } \frac{x \cos x}{\left( x- \frac{1}{2}\right)^2+ \frac{3}{4}} dx + \frac{1}{2} \int_{- \infty }^{ \infty } \frac{x\cos x}{\left( x+ \frac{1}{2}\right)^2+ \frac{3}{4}} dx+ \frac{1}{2} \int_{- \infty }^{ \infty } \frac{\cos x}{\left( x+ \frac{1}{2}\right)^2+ \frac{3}{4}} dx}\)

Robiąc standardowe podstawienia do tych całek:

\(\displaystyle{ x- \frac{1}{2} :=x}\)

oraz;

\(\displaystyle{ x+ \frac{1}{2} :=x}\)

Otrzymamy:

\(\displaystyle{ \frac{1}{2} \int_{- \infty }^{ \infty } \frac{\cos(x+ \frac{1}{2}) }{x^2+ \frac{3}{4} }dx- \frac{1}{2} \int_{- \infty }^{ \infty } \frac{(x+ \frac{1}{2} ) \cos(x+ \frac{1}{2}) }{x^2+ \frac{3}{4} }dx +\frac{1}{2} \int_{- \infty }^{ \infty } \frac{(x- \frac{1}{2} ) \cos(x- \frac{1}{2}) }{x^2+ \frac{3}{4} }dx+\frac{1}{2} \int_{- \infty }^{ \infty } \frac{ \cos(x- \frac{1}{2}) }{x^2+ \frac{3}{4} }dx}\)

Upraszczając to wszystko mnożąc odejmując otrzymamy ostatecznie ( o ile się gdzieś nie walnąłem):

\(\displaystyle{ \frac{1}{2} \cos \frac{1}{2} \int_{- \infty }^{ \infty } \frac{\cos x}{x^2+ \frac{3}{4} } dx+\sin \frac{1}{2} \int_{- \infty }^{ \infty } \frac{ x\sin x}{x^2+ \frac{3}{4} } dx}\)

Teraz policzymy:

\(\displaystyle{ \int_{- \infty }^{ \infty } \frac{\cos x}{x^2+ \frac{3}{4} } dx}\)

połóżmy:

\(\displaystyle{ f(a)= \int_{- \infty }^{ \infty } \frac{\cos ax}{x^2+ \frac{3}{4} } dx}\)

\(\displaystyle{ f'(a)=- \int_{- \infty }^{ \infty } \frac{x \sin ax}{x^2+ \frac{3}{4} } dx}\)

Policzmy \(\displaystyle{ f(a)}\) przez części:

\(\displaystyle{ f(a)= \int_{- \infty }^{ \infty } \frac{\cos ax}{x^2+ \frac{3}{4} } dx}\)

\(\displaystyle{ u= \frac{1}{x^2+ \frac{3}{4} }}\)

\(\displaystyle{ du=- \frac{2x}{\left( x^2+ \frac{3}{4}\right)^2 } , dv=\cos axdx , v= \frac{1}{a} \sin ax }\)

Co daje:

\(\displaystyle{ f(a)= \frac{1}{a} \cdot \frac{\sin ax}{x^2+ \frac{3}{4} } |_{- \infty }^{ \infty }+ \frac{1}{a} \int_{- \infty }^{ \infty } \frac{2x \sin ax}{\left( x^2+ \frac{3}{4}\right)^2 } dx}\)

To pierwsze za = dąży do zera...więc mamy:

\(\displaystyle{ af(a)= \int_{- \infty }^{ \infty } \frac{2x \sin ax}{\left( x^2+ \frac{3}{4}\right)^2 } dx}\)

Teraz jak policzyłem drugą pochodną \(\displaystyle{ f''(a)}\)

Otrzymałem:

\(\displaystyle{ f''(a)=-\int_{- \infty }^{ \infty } \frac{x^2 \cos ax}{x^2+ \frac{3}{4} } dx =-\int_{- \infty }^{ \infty } \sin ax+ \frac{3}{4}\int_{- \infty }^{ \infty } \frac{ \sin ax}{x^2+ \frac{3}{4} } dx }\)

Z daleka pachnie niezbieżnością więc to mi nie pasowało...

Spróbowałem inaczej, jeszcze raz napisałem:

\(\displaystyle{ f'(a)=- \int_{- \infty }^{ \infty } \frac{x \sin ax}{x^2+ \frac{3}{4} } dx}\)

I zrobiłem podstawkę:

\(\displaystyle{ ax:=x , x:= \frac{1}{a} x , dx:=\frac{1}{a} dx }\)

Co dało:

\(\displaystyle{ f'(a)=- \int_{- \infty }^{ \infty } \frac{x \sin x}{x^2+ \frac{3}{4}a^2 } dx}\)

teraz to zróżniczkujmy:

\(\displaystyle{ f''(a)=- \frac{3}{2} \int_{- \infty }^{ \infty } \frac{ax \sin x}{\left( x^2+ \frac{3}{4}a^2 \right)^2 } dx}\)

Wracając z powrotem na stare śmieci podstawieniem, otrzymamy:

\(\displaystyle{ x:=ax , dx:=adx}\)

\(\displaystyle{ f''(a)=- \frac{3}{2a} \int_{- \infty }^{ \infty } \frac{x \sin ax}{\left( x^2+ \frac{3}{4} \right)^2 }dx=- \frac{3}{2a} \cdot \frac{1}{2} af(a) }\)

biorąc powyższe przez części

I w związku z tym otrzymamy równanie różniczkowe:

\(\displaystyle{ f''(a)=- \frac{3}{4} f(a)}\)

Co po rozwiązaniu da nam:

\(\displaystyle{ f(a)=C_{1} \cos\left( \frac{ \sqrt{3} }{2}a \right) + C_{2} \sin\left( \frac{ \sqrt{3} }{2}a \right)}\)

\(\displaystyle{ f(0)=C_{1}= \int_{- \infty }^{ \infty } \frac{dx}{x^2+ \frac{3}{4} } = \frac{2 \pi \sqrt{3} }{3} }\)

\(\displaystyle{ f'(a)=- \frac{ \sqrt{3} }{2} C_{1} \sin\left( \frac{ \sqrt{3} }{2}a \right)+ \frac{ \sqrt{3} }{2} C_{2} \cos\left( \frac{ \sqrt{3} }{2}a \right)}\)

Ale:

\(\displaystyle{ f'(a)=0}\)

więc:

\(\displaystyle{ C_{2}=0}\)

Ostatecznie otrzymamy:

\(\displaystyle{ f(a)= \frac{2 \sqrt{3} \pi }{3} \cos\left( \frac{ \sqrt{3} }{2}a \right) }\)

Co da nam:

\(\displaystyle{ f(1)= \int_{- \infty }^{ \infty } \frac{\cos ax}{x^2+ \frac{3}{4} } dx=\frac{2 \sqrt{3} \pi }{3} \cos\left( \frac{ \sqrt{3} }{2}a \right)=\frac{2 \sqrt{3} \pi }{3} \cos\left( \frac{ \sqrt{3} }{2} \right)}\)

Druga całka:

\(\displaystyle{ \int_{- \infty }^{ \infty } \frac{x \sin x}{x^2+ \frac{3}{4} }dx=f'(1)}\)

a skoro:

\(\displaystyle{ f(a)= \frac{2 \sqrt{3} \pi }{3} \cos\left( \frac{ \sqrt{3} }{2}a \right) }\)

\(\displaystyle{ f'(a)=-\pi \cdot \sin \left( \frac{ \sqrt{3} }{2} a \right) }\)

\(\displaystyle{ f'(1)=\int_{- \infty }^{ \infty } \frac{x \sin x}{x^2+ \frac{3}{4} }dx=-\pi \cdot \sin \left( \frac{ \sqrt{3} }{2} \right) }\)

cnd...


Proponuję teraz dla odmiany całkę z sinusem:

\(\displaystyle{ \int_{- \infty }^{ \infty } \frac{\sin x}{x^2+1} dx}\)

Dodano po 6 minutach 35 sekundach:
A poza tym temat w złym dziale...
Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 4076
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 80 razy
Pomógł: 1395 razy

Re: Całka z kosinusem

Post autor: Janusz Tracz »

\(\displaystyle{
\begin{split}
\int_{-\infty}^{+\infty} \frac{\cos x}{x^4+x^2+1} \, \dd x&= \mathsf{Re} \left[ 2\pi i \sum_{k}^{} \mathsf{Res} \Big( \frac{\exp (i \, \bullet)}{\bullet^4+\bullet^2+1} ; z_k \Big) \right] \\[2ex]
&= \mathsf{Re} \left[ 2\pi i \Bigg( \frac{\exp \Big(i \big( \tfrac{1}{2} +i \tfrac{ \sqrt{3} }{2} \big)\Big)}{4\big( \tfrac{1}{2} +i \tfrac{ \sqrt{3} }{2} \big)^3+2\big( \tfrac{1}{2} +i \tfrac{ \sqrt{3} }{2} \big)} + \frac{\exp \Big(i \big( -\tfrac{1}{2} +i \tfrac{ \sqrt{3} }{2} \big)\Big)}{4\big( -\tfrac{1}{2} +i \tfrac{ \sqrt{3} }{2} \big)^3+2\big( -\tfrac{1}{2} +i \tfrac{ \sqrt{3} }{2} \big)} \Bigg) \right]\\[2ex]
&=\frac{e^{-\frac{\sqrt{3}}{2}} \pi}{3} \Big(3 \sin\Big(\frac{1}{2}\Big)+\sqrt{3} \cos\Big(\frac{1}{2}\Big)\Big).
\end{split}
}\)
arek1357 pisze: 10 maja 2023, o 23:51 Proponuję teraz dla odmiany całkę z sinusem:
\(\displaystyle{ \int_{- \infty }^{ \infty } \frac{\sin x}{x^2+1} \, \dd x=\text{hmmm}\dots \text{zero}. }\)
Awatar użytkownika
arek1357
Użytkownik
Użytkownik
Posty: 5749
Rejestracja: 6 gru 2006, o 09:18
Płeć: Mężczyzna
Lokalizacja: blisko
Podziękował: 131 razy
Pomógł: 526 razy

Re: Całka z kosinusem

Post autor: arek1357 »

No dobrze to propozycja taka zmieniam:

\(\displaystyle{ \int_{0}^{ \infty } \frac{\sin x}{x^2+1} dx=}\)
ODPOWIEDZ