Równość indukcyjnie

Ze względu na specyfikę metody - osobny dział.
Awatar użytkownika
SkitsVicious
Użytkownik
Użytkownik
Posty: 21
Rejestracja: 23 sty 2018, o 10:42
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 4 razy

Równość indukcyjnie

Post autor: SkitsVicious »

Udowodnij, że dla każdej dodatniej liczby naturalnej \(\displaystyle{ n}\) prawdziwa jest równość:
\(\displaystyle{ \left( 1- \frac{4}{1} \right)\left( 1- \frac{4}{9} \right)...\left( 1- \frac{4}{\left( 2n-1\right) ^{2} } \right) = \frac{1 + 2n}{1 - 2n}}\)
Siedzę nad takim dowodem i dochodzę do takich obliczeń, że oczywistym jest, że nie zauważam jakiejś sztuczki, która wszystko skróci. Chętnie poznam rozwiązanie
Awatar użytkownika
Janusz Tracz
Użytkownik
Użytkownik
Posty: 4079
Rejestracja: 13 sie 2016, o 15:01
Płeć: Mężczyzna
Lokalizacja: hrubielowo
Podziękował: 80 razy
Pomógł: 1396 razy

Re: Równość indukcyjnie

Post autor: Janusz Tracz »

Dla \(\displaystyle{ n=1}\) jest ok. Więc zakładamy że dla jakichś \(\displaystyle{ n}\) też jest ok i piszemy co się dzieje dla \(\displaystyle{ n+1}\). Mamy więc

\(\displaystyle{ \left( 1- \frac{4}{1} \right)\left( 1- \frac{4}{9} \right)...\left( 1- \frac{4}{\left( 2n-1\right) ^{2} } \right) \left( 1- \frac{4}{\left( 2n+1\right) ^{2} } \right)=...}\)

Z założenia indukcyjnego wiemy jednak że:

\(\displaystyle{ =\frac{1 + 2n}{1 - 2n} \left( 1- \frac{4}{\left( 2n+1\right) ^{2} } \right)= \frac{4n^2+4n-3}{(1-2n)(1+2n)}= \frac{2n+3}{-2n-1}= \frac{1+2(n+1)}{1-2(n+1)}}\)

co kończy dowód jako że prawa strona jest tezą dla \(\displaystyle{ n+1}\). Więc istotnie prawdziwa jest implikacja \(\displaystyle{ T(n) \Rightarrow T(n+1)}\)
Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15687
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 196 razy
Pomógł: 5221 razy

Re: Równość indukcyjnie

Post autor: Premislav »

Można bez indukcji:
\(\displaystyle{ \prod_{k=1}^{n} \left( 1-\frac{4}{(2k-1)^2}\right) =\\= \prod_{k=1}^{n}\left( 1-\frac{2}{2k-1}\right)\left(1+\frac{2}{2k-1} \right)=\\= \prod_{k=1}^{n}\frac{2k-3}{2k-1}\cdot \frac{2k+1}{2k-1}=\\=-1\cdot \frac{2n+1}{2n-1}=\\=\frac{2n+1}{1-2n}}\),
ponieważ wszystkie czynniki prócz pierwszego i ostatniego się skracają, patrz:
\(\displaystyle{ \frac{2k-5}{2k-3}\cdot \frac{2k-1}{2k-3}\cdot \frac{2k-3}{2k-1}\cdot \frac{2k+1}{2k-1}\cdot \frac{2k-1}{2k+1}\cdot \frac{2k+3}{2k+1}=\ldots}\)
ODPOWIEDZ