Ortocentrum - dowód

Dział całkowicie poświęcony zagadnieniom związanymi z trójkątami. Temu co się w nie wpisuje i na nich opisuje - też...
kasia_basia
Użytkownik
Użytkownik
Posty: 4
Rejestracja: 30 sty 2024, o 00:59
Płeć: Kobieta
wiek: 18
Podziękował: 4 razy

Ortocentrum - dowód

Post autor: kasia_basia »

Cześć! Mam problem z następującym zadaniem:

Przez środek \(\displaystyle{ S}\) wysokości \(\displaystyle{ CD}\) w trójkącie \(\displaystyle{ ABC}\) i wierzchołek \(\displaystyle{ A}\) poprowadzono prostą przecinającą \(\displaystyle{ BC}\) w punkcie \(\displaystyle{ E}\). Wiedząc, że długość \(\displaystyle{ CS}\) jest równa pierwiastkowi kwadratowemu z iloczynu \(\displaystyle{ AS}\) i \(\displaystyle{ SE}\) wykaż, że \(\displaystyle{ S}\) pokrywa się z ortocentrum trójkąta.

Wiem, że ortocentrum leży na przecięciu wysokości, zatem odcinek \(\displaystyle{ AE}\) również musi być wysokością tego trójkąta. Nie wiem jednak jak ruszyć to dalej. Będę wdzięczna za jakąś podpowiedź...
Ostatnio zmieniony 23 lut 2024, o 22:17 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Używaj LaTeXa do wszystkich wyrażeń matematycznych.
anna_
Użytkownik
Użytkownik
Posty: 16328
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 35 razy
Pomógł: 3248 razy

Re: Ortocentrum - dowód

Post autor: anna_ »

t456426.png
\(\displaystyle{ |CS|=\sqrt{|AS|\cdot |SE|}}\)
\(\displaystyle{ h=\sqrt{xy}}\)
\(\displaystyle{ h^2=xy}\)

Z trójkąta ADS
\(\displaystyle{ cos\alpha=\frac{h}{x}}\)

Z twierdzenia cosunusów dla trójkąta SEC
\(\displaystyle{ t^2=h^2+y^2-2hycos\alpha\\
t^2=h^2+y^2-2hy\cdot \frac{h}{x}\\
t^2=h^2+y^2-\frac{2h^2y}{x}\\
t^2=h^2+y^2-\frac{2xy\cdot y}{x}\\
t^2=h^2+y^2-2y^2\\
t^2=h^2-y^2\\
h^2=t^2+y^2}\)



Trójkąt \(\displaystyle{ SEC}\) jest prostokątny.
\(\displaystyle{ |\angle SEC|=90^o.}\)
\(\displaystyle{ AE}\) jest wysokością opuszczoną na bok \(\displaystyle{ BC}\).
ODPOWIEDZ