Nierówność, dwie powiązane ze sobą niewiadome

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
Samouk1
Użytkownik
Użytkownik
Posty: 77
Rejestracja: 13 lis 2022, o 14:12
Płeć: Mężczyzna
wiek: 26
Podziękował: 30 razy
Pomógł: 2 razy

Nierówność, dwie powiązane ze sobą niewiadome

Post autor: Samouk1 »

Niech \(\displaystyle{ k,n}\) będą liczbami naturalnymi. Liczba \(\displaystyle{ n}\) jest dowolnie ustalona i \(\displaystyle{ 0 < k < n-1.}\) Takie mam założenia.

Teraz chciałbym znaleźć ograniczenie górne dla \(\displaystyle{ k}\) względem \(\displaystyle{ n}\) jeżeli \(\displaystyle{ k^2 + k \ge n-1.}\)
Wpadłem na \(\displaystyle{ k \sqrt{2} > \sqrt{k^2} \ge \sqrt{n-1}}\) co łatwo daje \(\displaystyle{ k > \frac{\sqrt{2(n-1)}}{2}.}\)

Jak można to ograniczenie jeszcze zmniejszyć?

Dodano po 59 minutach 40 sekundach:
Pomyłka: Chodzi oczywiście o ograniczenie dolne.
Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15687
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 196 razy
Pomógł: 5220 razy

Re: Nierówność, dwie powiązane ze sobą niewiadome

Post autor: Premislav »

Nierówność \(\displaystyle{ k^2+k\ge n-1}\) to nierówność kwadratowa zmiennej \(\displaystyle{ k}\), więc można ją potraktować wyróżnikiem. A jeśli ktoś nie che tak robić, to można pomnożyć stronami przez cztery, dodać stronami \(\displaystyle{ 1}\), zauważyć wzór skróconego mnożenia i wówczas otrzymujemy coś takiego:
\(\displaystyle{ (2k+1)^2\ge 4n-3}\), a że liczba \(\displaystyle{ 2k+1}\) jest dodatnia, to stąd \(\displaystyle{ 2k+1\ge \sqrt{4n-3}}\) itd. Zostają proste przekształcenia.
ODPOWIEDZ