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1. IN a recent paper, f which will be referred to as T.M., I attempted
unsuccessfully! to prove that every finite, unbounded manifold in
which every circuit bounds a 2-cell is a 3-sphere. On the basis of
T.M., Theorem 1, which is false, I had prepared an article containing
the theorem on infinite manifolds announced in T.M., § 1. An obvious
corollary to this theorem is that any infinite, unbounded manifold, ||
in which every finite circuit bounds a 2-cell and every finite 2-cycle
bounds a finite region, is what we shall call a formal S-cett. In § 3
below, an example is given which disproves this.

By a formal 3-cell we shall mean an infinite, unbounded manifold,
a sub-divisionfl of which, say C, contains an infinite sequence of
elements Ex, E2,..., such that En+1 contains every solid of C which
meets En. Under these conditions it is obvious that any solid, and
therefore any finite region, in C is contained in En for some value of n.
Moreover, it is not difficult to show that a subdivision of C has a
rectilinear model covering Euclidean 3-space; also that the symbol
for such a rectilinear complex is a formal 3-cell. Thus an infinite
manifold is a formal 3-cell, if and only if its rectilinear model in
Hilbert space is in (1,1) semilinear correspondence with Euclidean
3-space.

To avoid verbal complications we shall not always distinguish' in
our notation or terminology between a manifold and one of its sub-
divisions. Thus a manifold will mean an abstraction determined by
the totality of symbols which are combinatorially equivalent}:J to a
given symbolic manifold. Any symbolic manifold may be called a

t Quart. J. of Math. (Oxford), 5 (1934), 308-20. % Ibid. 6 (1935).
|! As in T.M., the words 'three-dimensional' will often be omitted.
"ft In referring to a subdivision of an infinite manifold it is implied that any

finite sub-complex has a finite subdivision. The theorems about combina-
torial subdivisions which are relevant to this paper are to be found in articles
by M. H. A. Newman (J. of London Math. Soc. 2 (1927), 56-64), and J. H. C.
Whitehead (Proc. Cambridgs Phil. Soc. 31 (1935), 69-75).

XX These definitions, and many of the subsequent arguments, are based upon
an article by J. W. Alexander, Annals of Math. 31 (1930), 292-320.
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covering of the corresponding manifold, and in dealing with a sub-
complex K, of a manifold M, we restrict ourselves to coverings which
contain K as a subniomplex. More precisely, the transformation
(.4, a)-1 shall not be applied to a covering of M unless a(A)B belongs
to K, where B is any component, including 1, such that aB belongs
to K,j[ and (U) stands for the boundary of a complex U.

2. By a non-singular deformation of an i-dimensional manifold
Nt (i = 1,2, or 3), in a three-dimensional manifold M, we shall mean
the resultant of a finite sequence of transformations of the form %

Nt-->Nt+(Ei+1)

if * = 1 or 2, where Ei+1 is an (t+1)-element which meets Nt in an
t-element on (Ei+1); and of the form

if t = 3, where Et is a 3-element whose boundary meets (Nt) in a
2-element and which is either contained in N+ or has no internal com-
ponent in common with Nt.

LEMMA 1. If a circuit c, on a two-dimensional manifold S, in M, is
transformable into c' by a non-singular deformation, there is a non-
singular deformation of 8 which carries c into c'.

Let c^c+(E2)

be the first step in the deformation of c. Let (E2) meet c in a segment
I and let ^ tv \ I

m = \Mi2)—I.

After a slight deformation, the intersection S.E2, if it exists, will
consist of non-singular circuits and segments, the latter having their
end-points on m, and S will not touch Ev except along the boundary
segment I. At least one of these circuits, say cx, can be joined to a
.vertex on m by a non-singular segment t, on E2, which does not meet
S except in the end-point on cv Let p be this end-point and let

N(K,L)
stand for the aggregate of components in any symbolic complex L
which meet a sub-complex K. With a suitable covering, N(t, M) is
a 3-element and N(p, S) a 2-element which divides N(t, M) into two

•f Unity stands for the 'empty' complex, and the convention is tha*;
L\ = L, L being any complex.

% Addition is to modulus 2 throughout this paper, though we shall sometimes
use the minus sign.
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3-elements. Let Es be the one which contains t. Then cx is trans-
formed into a segment by the deformation

In this way all the circuits in S .E2 can be eliminated.
When the circuits have been eliminated there will be at least one

segment in S. E2, say u, which, together with a segment of TO, bounds
a 2-element C2, on Et, containing no other component of S. If E3

is defined as before, with N(CZ,M) and N(u, S) taking the place of
N(t, M) and N(p, S), the segment u is eliminated from S.Et by the
deformation 8 + 8+(Ea).

Reiterating this process, we obtain a non-singular deformation of

m

S into a surface Sl, which does not meet E2 except in I, and this
deformation leaves c unaltered. It is now obvious that the first step
in the deformation c~>c' can be realized by a non-singular deforma-
tion of Sl, and the lemma follows from induction on the number of
steps in c ->• c'.

If a circuit in M is contained in a 3-element in M it will be called
an elementary circuit. A circuit which bounds a (singular) 2-cell but
which is not an elementary circuit will be called a self-linking circuit.
The simplest type of self-linking circuit is illustrated by the diagram,
the manifold being the residual space of a circuit m in Euclidean
space, and s being a self-Unking circuit.

We shall need two lemmas about punctured spheres.f We first
recall from T.M. pp. 319-20, that any two punctured spheres are
equivalent if they have the same number of boundary 2-spheres. J

f Cf. T. M. § 2. When we refer to a punctured sphere or to any other bounded
manifold, it is to be assumed that the boundary is non-singular.

J The argument used in T.M. is valid in virtue of Alexander's theorem about
the separation of a 3-sphere by a 2-3phere (Proc. National Ac. of Sri. 10 (1924),
6-8).
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LEMMA 2. Any complex K, in a punctured sphere U, is contained in
an element which is contained in U, provided K does not separate any
pair of 2-apheres in (U).

The 2-spheres in (U) can be connected by a system of tubes which
do not meet K, in such a way as to form a single 2-sphere which
bounds a 3-element contained in U and containing K.

LEMMA 3. Let U be o punctured sphere and E a 3-element whose
boundary meets (U) in a band bounded by a pair of non-singular and
non-intersecting circuits, and either

(i) let E have no other component in common with V,
or (ii) let E be contained in U.
Then U-\-E is a punctured sphere (case i) or a pair of punctured
spheres (case ii).

Taking U to be actually imbedded in a 3-sphere the proof of the
second case is obvious. In the first case one can, by the standard
method of starring elements, imbed E in the 3-element bounded by
the 2-sphere in (U) which meets (E), and the proof is again obvious.

From Lemma 1 it follows that any circuit which is contained in
a punctured sphere in a given manifold is an elementary circuit.

Now let a be a non-singular circuit in a manifold M, and let a
bound a, 2-cell e2 which crosses itself along a non-singular segment
a/?, a and /? being vertices on a. The non-singular image e2, of e2, is in
(1,1) correspondence with e2 except for two segments ab and a'b',
each of which corresponds to a/9. Let b and a' be inside e2, and a and
b' on s, the boundary of e2 and the image of a. Let x and x' be vertices
on ab and a'b' respectively, having the same image on a/}, and let t be
any segment in e2 joining x to x' and corresponding to a simple circuit

.T, in M. If t does not meet ab or a'b' except in x and x', we call it a
characteristic segment and T a characteristic circuit with respect to e._,.

THEOREM I. If a given characteristic circuit is an elementary circuit,
e2 is contained in a 3-element.

Let a given characteristic circuit T be contained in a 3-element.
This 3-element can be deformed into one which contains T and also
the double segment aft, and finally into a 3-element which contains
c2, by the methods used in proving Lemma 1.

THEOREM 2. If a is an elementary circuit, a given characteristic circuit
is either an elementary circuit or a one-sided circuit in a non-singular
prqjective plane.



272 J. H. C. WHTTEHEAD

In virtue of Lemma 2 it is sufficient to assume that a is contained
in a punctured sphere U, and we assume that no characteristic circuit
is contained in a punctured sphere. If any characteristic circuit were
contained in a punctured sphere, it would follow from Lemma 2 and
Theorem 1 that any circuit on e2, treated as a complex in M, would be
an elementary circuit. After a slight deformation of (U) we assume
that no face of e2, nor edge of the double line afi, lies on (U), and that
each vertex of (U) . e2 is incident with precisely two edges of (U).ei

if it does not lie on a/3, and with four edges if it lies on a/?. We also
suppose that e2 does not touch (U), i.e. e2 crosses (C7) at any common
vertex.

Under these conditions the image of (U).e2 in e% is a set of non-
singular and non-intersecting circuits, which we shall call / . The
vertices in which a/3 meets (U) will be called double vertices, and
in the neighbourhood of a double vertex f (i7).e2 corresponds to
two segments in / meeting ab and a'b' in x and x', the two images
of f

Our first step is to eliminate from (U).e2 all the isolated circuits,
that is to say, those which do not contain a double vertex. Such a
circuit is the image of a circuit in / which does not meet ab or a'b'.
If there is such a circuit, there is at least one which bounds a
2-element containing inside it no component of / . Let there be such
a circuit, and let E2 be the image on e2 of the 2-element in question.
Let V stand for that one of the two regions U and M — U which con-
tains E2. With a suitable covering, N(E2, V) is a 3-element which,
with U, satisfies the conditions of Lemma 3. Therefore

U+N(E2,V)

is either a punctured sphere containing U or a pair of punctured
spheres, one of which contains a. In either case U can be replaced by
another punctured sphere containing a such that the number of
isolated circuits in (U).ei is reduced, and the number of double
vertices is not increased. Without changing our notation we assume
all the isolated circuits in (U).t2 to have been eliminated in this
way.

We proceed to replace the new region U by a punctured sphere such
that no circuit in / meets ab or a'b' more than once. No circuit in
/ separates 6 from a', since its image on (U) does not link a. In the
absence of isolated circuits, it follows that each circuit in / will then
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meet each of ab and a'b' just once. If there is a circuit in / which
meets either ab or a'b' more than once, I say that there is at least one
segment I, on some circuit in / , which, together with a segment of
ab or a'b', bounds a 2-element E%, containing no other component
of / or of ab or a'b'. Let Cx be any circuit in / which meets ab or
a'b', say ab, more than once. The 2-element bounded by Cx either
contains both b and o' or neither. First assume that it contains
neither. Then the segments of ab and a'b' which are inside this
2-element have both ends on Clt and at least one of-these segments,
together with an arc of Clt bounds a 2-element C2, containing no
other component of ab or of a'b'. The existence of the required
2-element E\, follows from a similar argument, applied to the seg-
ments of I lying in C2.

If the 2-element bounded by Cx contains both b and a', let x be the
intersection of ab with C1 which is nearest to b, and y the next nearest.
Then the segment xy of ab, together with one of the two arcs into
which Cx is separated by x and y, bounds a 2-element containing
neither b nor a'. The existence of the 2-element E% now follows from
the argument used in the previous case, the 2-element bounded
by the two segments xy playing the part of the original 2-element
bounded by Cv

Let Et and A be the images of E\ and I in M, and let V stand for
whichever of U or M— U contains Ez. Then the double vertices of
(U). e2 in which a/? meets A are eliminated by means of the deformation

U-+U+N(E2,V),
and no new double vertices are introduced. Any isolated circuits
which are created by this deformation can be eliminated as before
without increasing the number of double vertices. It follows from
induction on the latter that a is contained in a punctured sphere U
such that each circuit in / meets each of the segments ab and a'b'
just once.

Now let Cj, ct,..., ck be the circuits in / , and let ct meet ab in pi

and a'b' in qt. We suppose ci+1 to be contained in the 2-element
bounded by c4, so that pi+1 lies between p{ and b and qi+1 between
qt and a'. The vertices p and q occur in pairs, the vertices in each pah-
having the same image on a/9. From the order in which they occur it
follows that » .

ii = Pk-i+i

where j)j and p'j have the same image.
3095-6
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Since we are assuming that a characteristic circuit for e2 is not an

elementary circuit, the set / is not empty and k > 0. Moreover k is
even, say k = 2r, since a and /? are both inside U. Let C2 be one of
the 2-elements into which the band bounded by cr and cr+1 is separated
by the segments prpr+i of ab and qrqr+l of a'b'. Since

IT = Pr+V 9r+l = Pr>

the image of C2 in M is a non-singular Mobius band /ij, with its
boundary (to modulus 2) on (U) and no other component on (U).
A segment in C2 joining a vertex on prpT+1 to the corresponding
vertex on p'rPr+i determines a characteristic circuit in M which is
a one-sided circuit on ^. A 2-element on (U) bounded by (/^) can
be added to fi^ to provide a non-singular projective plane on which
a characteristic circuit is a one-sided circuit.

From an argument similar to the one which led to the 2-cell El,
bounded by I and a segment of ab or a'b', it follows that any charac-
teristic circuit can be transformed into any other by a non-singular
deformation. Therefore the theorem follows from Lemma 1.

COROLLARY. 'In a manifold with no torsion, a is an elementary circuit,
if and only if a given characteristic circuit is an elementary circuit.

We conclude this section with a theorem which is not needed for the
subsequent sections, but which may be of some general interest.
Let a1,..., an be any set of non-singular circuits in M, each of which
bounds a 2-cell, and let each circuit ai contain at least one segment TO1,
which does not belong to any of the others. Then the theorem is:

THEOREM 3. The circuits a bound a set of 2-ceUs whose intersections
with themselves and each other consist of non-singular double segments
joining vertices on a1,..., an.

Let a1 = (e|). Each of the 2-cells e can obviously be deformed into
a 2-cell which has no segment in common with any of the circuits a,
which does not touch any of these circuits, and which does not inter-
sect a1 except in TO1. After further slight deformations it may be
assumed that e\,..., eg intersect themselves and each other at mos*
in a set of double segments, at which two sheets belonging to e\ and
c{ cross (t = j ; or i # j), and triple points at which three sheets cross.f
The branch points may be eliminated by Dehn's method, or by the
similar method of cutting used in T.M. for the reduction of the
model B.

t Cf. M. Dehn, Math. Annalen, 09 (1910), 147.
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Each double line corresponds to two lines on ej and 4 respectively

(i == j-t or i =£ j), e\ being the non-singular image of ef. It is either
a segment (possibly singular) or a circuit. Let a, on one of the arcs m,
be an end-point of a double segment which contains a triple point.
Taking a as the first point of the double segment, let fi be the first
triple point, and let the sheet which cuts the double segment at /?
be on €j. Then the triple point /? is eliminated by the deformation

where E3 is a 3-element defined, as in the proof of Lemma 1, in terms
of N(<xfi, M) and the neighbourhood of jS on the sheet which cuts a/3.
No new triple points are created, and induction shows that all the
triple points on the double segments can be eliminated.

The theorem now follows from induction on the number of double
circuits and an argument similar to the one used in the proof of
Lemma 1 to eliminate the circuits in S. Es.

Any double segment y corresponds to segments gi and gl on
e\ and e{. lig{ has one end on (4) and one end inside e|, the same will
be true of g1 with respect to 4- IQ this case y will be described as of
the first type. Otherwise either gi or gf, say gi, will have both its
ends on (4), and g1 will have both ends inside e\. If gi and part of
the segment on (4) corresponding to mi bound a 2-element on e\
containing no other double segment, gi can be eliminated by a defor-
mation similar to the second deformation used in proving Lemma 1.
In any case a deformation of-the first kind, applied to the sheet gi of
c£, replaces y by two double segments of the first type. For a vertex
of gi can be joined to a vertex on the image of m* by a segment which
does not meet any other double segment, and .the image of this seg-
ment on e{ can take the place of t in the proof of Lemma 1. Thus all
the double segments may be replaced by double segments of the
first type.

3. By a ring we shall mean an (orientable) anchor ring composed
of two 3-elements Ex and E2, meeting in a pair of 2-elements common
to (Ej) and (Et), these 2-elements having no common vertex. The
boundary of either 2-element will be called a meridian circuit, and a
circuit on the boundary of the ring which intersects a meridian in
a single vertex will be called a longitudinal circuit, or a longitude. We
shall also describe as a longitude any circuit in the ring which is
isotopic to a longitudinal circuit on the boundary.
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LEMMA 4. Either of two symbolic rings with a common boundary can

be transformed internally into the other provided they have a meridian
circuit in common.

Let Rx and R2 be the two rings and let

where Ex and E\ meet in 2-elements bounded by meridian circuits
m and TO*, m being also a meridian of R2. After a suitable internal
subdivision R2 -»• R't, it is clear that

where Et and E% are 3-elements meeting in 2-elements bounded by
TO and m*. Then R± and R't can be transformed internally into the
same ring by starring first E( and E* (i = 1, 2) and then the common
2-elements. Since R2 -*• R't internally, the lemma is established.

Let R± be a ring contained in a symbolic manifold M, and let R2 be
a symbolic ring whose boundary is identical with (i?1), the two rings
having a common meridian. Then from Lemma 4 we have

LEMMA 5. / / Rs has no internal component in common with M,

by transformations which are internal to Rx.
A circuit a in a ring M will be called a self-linking circuit of the first

type if it bounds a 2-cell of the kind described in the last section, with
a longitude as a characteristic circuit. If M is taken to be the region
outside an unknotted tube m, in a 3-sphere, the diagram in § 2
represents a self-unking circuit of the first .type. If n > 1, a will be
called a self-linking circuit of the nth type if it bounds a 2-cell of the
kind described in § 2, with a self-linking circuit of the (n— l)th type
as a characteristic circuit. From the corollary to Theorem 2 and
induction on n it follows that a self-linking circuit of the nth type is
self-Linking in the sense of § 2.

Let" 8 be a self-Linking circuit of the first type inside a symbolic
ring R. After a suitable subdivision, N(s, R) will be a ring S, any
longitude in which will be a self-linking circuit of the first type in R.
Let TO be a meridian circuit and I a longitude on (S), I and TO having
a single vertex in common. Let M and L respectively be meridian
and longitudinal circuits on (R), meeting in a single vertex.

After a suitable subdivisionf of R we may suppose (R) and (S) to

•f i.e. a general subdivision (Newman, loc. cit.).
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be congruent, L and M corresponding to I and m respectively. With-
out altering our notation we suppose this to be the case.

Let U = P(alJfl2,...,ajV)

be the region R—S, and let

V* = P(a\,a\,...yN) (i = 1,2,...)
be an infinite sequence of copies of U, P being the same function in
each case. Let

(&) = F(b\,...,bi), (S*) = F(c\,...,ci),
the 6's and c's being certain of the vertices a, and the congruence
(R) = (S) being given by

h -> cA.
Writing 6J for bx, let tff1 be substituted for c\ in Ul (A = l,...,k;
i — 1, 2,...), and let Vi be the region into which U1 is thus transformed.
Then T say that the manifold

w = R+yvi

satisfies the conditions
(i) every circuit bounds a 2-cell;

(ii) every finite 2-cycle bounds a finite region;
(iii) every non-singular 2sphere bounds a 3-element;

and that W is not a formal 3-cell.

For let Wn = R+Y V\
i-l

with W6 = R. Then it follows from induction on n and Lemma 5
that Wn is a Ting for every value of n, a meridian circuit on (Wn)
((Wn) — (Rn)) corresponding to a meridian on (<Sn+1) in the congruence

The conditions (ii) and (iii) are satisfied by any ring. Therefore they
are satisfied by W, since any finite region in W is contained in Wn

for some value of n.
Let ln be the longitude on (Sn) which corresponds to I on (<S).

Then ln bounds a 2-cell in Wn+1, since any longitude in S is deformable
into s, and s bounds a 2-cell in R. Therefore any circuit in Wn bounds
a 2-cell in Wn+1, and it follows that the manifold W satisfies the first,
and therefore all the conditions (i), (ii), (iii).

Since Rn-Sn = Un -+ Vn = Wn-Wn~1

on replacing cj by fej"1, it follows from Lemma 5 that R71 -*• Wn by
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a series of simple transformations which, except for the substitutions
(cj, 6J-1), are internal to Sn. It follows that Rn and Wn have a
common subdivision which, except for the substitutions (cjf, 6J"1),
leaves Un and Vn unaltered.f Since I is a self-linking circuit of the
first type in B, it follows that Ln~x is a self-linking circuit of the first
type in Wn, & being the circuit on (B*) corresponding to L on (R).
Therefore any longitudinal circuit in Wn~l is a self-Unking circuit
of the first type in Wn. I t follows from induction on k that any
self-Unking circuit of the Ath type in Wn~l is a self-Unking circuit of
the (4+l)th type in Wn. From induction on p it foUows that any
self-Unking circuit of the 4th type in Wn is a self-Unking circuit of
the (k-\-p)t\i type in Wn+P. In particular, I is a self-Unking circuit of
the nth type in Wn.

If W were a formal 3-cell, some subdivision of I would be contained
in an element which would itself be contained in a subdivision of
Wn for some value of n. This would contradict the fact that I is a
self-linking circuit in Wn. Therefore W is not a formal 3-ceU.

4. Leaving aside the question whether or no aU the spaces defined
by the methods of § 3 are equivalent, we shall show that one of them
has a semilinear map in a semilinear 3-sphere.f

By an unknotted ring R, in a 3-sphere H,\re shall mean one such
that H—R is a ring. With a suitable covering it is clear that the
neighbourhood of an unknotted circuit is an unknotted ring.

Let R be an unknotted ring in a 3-sphere H, which we take to be
a rectilinear simphcial complex in Euchdean i^-space (N > 3). Let
a be an unknotted, self-Unking circuit of the first type in R (cf. the
diagram in § 2), and let W be the manifold defined by means of R,
a and the construction given in § 3. We shall take W to be a recti-
•linear complex in Hilbert space, with the symbol given in § 3. Since s
is unknotted, H—Sw& ring, and we assume the congruence (R) = (S)
of § 3 to be such that meridian circuits of R and H—R correspond to
meridians of S and H—S, respectively.

Let Tn be an unknotted ring in H, and let Wn be mapped semi-
linearly on H—Tn in such a way that the image in the congruence
(R) = (Wn) of a meridian on H—R is mapped on a meridian of
Tn. Then the initial congruence (R) = (S) determines a semilinear
mapping (S) -> (Tn), such that a meridian of H—S corresponds to

t J. H. C. Whitehead, Proc. Cambridge Phil. Soc. loc. cit.
j Cf. J. H. C. Whitehead, Proc. National Ac. of Sci., 21 (1935), 364-6.
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a meridian of Tn. From Lemma 5 it follows that H—S can be mapped
semilineaxly on Tn in such a way that the transformation H— S -> Tn

coincides with {S) -+ (Tn) on (S). Let Tn+1 be the image of H—R
in H—S -+ Tn. Then Tn— Tn+l is the image of R—S, and Wn+1— Wn

is mapped semihnearly on Tn— Tn+1 in such a way that the trans-
formations

W» -+ H— Tn, Wn+1— W" ->• Tn— T»+1

can be united to form a seinilinear transformation
Wn+1 -> H—Tn+1.

Moreover a meridian of H—R, and therefore the corresponding
circuit of Wn+1, is mapped on a meridian of Tn+1.

If T° = H—R, an infinite sequence of rings T°, T1,... (Tn c Tn+1)
is denned inductively, and W is mapped semilinearly on H—X,
where X is the set of points common to T°, T1,....


