
RADON-NIKODYM THEOREM, HAHN-JORDAN DECOMPOSITION AND LEBESGUE
DECOMPOSITION

1. INTRODUCTION

This notes are devoted to advanced notions in measure theory. Tools presented here are indis-
pensable in probability theory, statistics and applications to geometry. We refer to [Monygham, 2018]
for basic measure theory and to [Monygham, 2019] for integration theory.

2. SIGNED AND COMPLEX MEASURES

In this section we define extensions of the notion of measure.

Definition 2.1. Let (X, Σ) be a measurable space. A signed measure on (X, Σ) is a function ν ∶ Σ →
R such that ν(∅) = 0 and

ν( ⋃
n∈N

An) = ∑
n∈N

ν(An)

for every family {An}n∈N of pairwise disjoint subsets of Σ. We also say that ν is a real measure on
(X, Σ) if it is signed measure and takes values in R.

Definition 2.2. Let (X, Σ) be a measurable space. A complex measure is a function ν ∶ Σ → C such
that ν(∅) = 0 and

ν( ⋃
n∈N

An) = ∑
n∈N

ν(An)

for every family {An}n∈N of pairwise disjoint subsets of Σ.

Definition 2.3. Let (X, Σ) be a measurable space and let µ be a measure on (X, Σ). Assume that
ν is either complex or signed measure on (X, Σ). Suppose that for every set A in Σ we have

µ(A) = 0 ⇒ ν(A) = 0

Then we write ν ≪ µ and say that ν is absolutely continuous with respect to µ.

Definition 2.4. Let (X, Σ) be a measurable space and let µ, ν be two measures either complex or
signed on (X, Σ). Suppose that there exists a set S ∈ Σ such that

µ(A ∩ S) = 0, ν(A ∖ S) = 0

for every A ∈ Σ. Then we write ν ⊥ µ and say that ν is singular with respect to µ.

3. HAHN-JORDAN DECOMPOSITION

Theorem 3.1 (Hahn-Jordan decomposition). Let (X, Σ) be a measurable space and ν ∶ Σ → R be a
signed measure. Then there exists the unique pair of measures ν+, ν− ∶ Σ → [0,+∞] such that

ν = ν+ − ν−

and ν+ ⊥ ν−.

For the proof we need the following notion.

Definition 3.2. Let (X, Σ, ν) be a space with signed measure. A set A ∈ Σ is positive if for every
subset B of A such that B ∈ Σ we have inequality ν(B) ≥ 0.

Lemma 3.2.1. Let B ∈ Σ be a set such that ν(B) ∈ R and ν(B) > 0. Then there exists a positive set C ⊆ B
such that ν(B) ≤ ν(C).
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Proof of the lemma. First note that all sets A ∈ Σ contained in B have finite measure (we left the
proof as an exercise for the reader). For every subset A ∈ Σ contained in B we define

δ(A) = max{1
2

inf{ν(D) ∣ D is a subset of A in Σ},−1}

Note that δ(A) ≤ 0. Now we define a sequence {Dn}n∈N of disjoint subsets of B and members of
Σ. This is done recursively as follows. If D0, ..., Dn are defined, then we pick Dn+1 as a subset of
B ∖ (D0 ∪ ...∪Dn) in Σ such that

ν(Dn+1) ≤ δ(B ∖ (D0 ∪ ...∪Dn) )

Let

C = B ∖ ⋃
n∈N

Dn

be a subset of B. Clearly C ∈ Σ and for every n ∈ N we have

δ(C) ≥ δ(B ∖ (D0 ∪ ...∪Dn) )

Thus

ν(C) = ν(B) − ∑
n∈N

ν(Dn) ≥ ν(B) − ∑
n∈N

δ(B ∖ (D0 ∪ ...∪Dn) ) = ν(B) − ∑
n∈N

δ(C)

Since ν(C) ∈ R, we derive that δ(C) = 0. This implies that C is a positive set and ν(C) ≥ ν(B). �

Proof of the theorem. Assume that for every A ∈ Σ we have ν(A) ∈ R∪ {−∞}. Now consider

α = sup{ν(C) ∣C is positive}

We can find a nondecreasing sequence {αn}n∈N of nonnegative real numbers that converges to
α and such that for every n ∈ N there exists a positive set Cn with ν(Cn) = αn. Now pick P =
⋃n∈N Cn. Obviously P is positive and ν(P) = α. In particular, α ∈ R. Assume that there exists
B ∈ Σ such that B ⊆ X ∖ P and ν(B) > 0. According to Lemma 3.2.1 we deduce that there exists a
positive set C inside B such that ν(B) ≤ ν(C). Then we get

α = ν(P) < ν(P) + ν(C) = ν(P ∪C)

and P ∪ C is positive. This contradicts the definition of α. Hence for every B ⊆ X ∖ P such that
B ∈ Σ we have ν(B) ≤ 0. Thus measures

ν+(A) = ν(A ∩ P), ν−(A) = −ν(A ∖ P)

defined for A ∈ Σ satisfy the assertion of the theorem. This finishes the proof of the Hahn-Jordan
decomposition under the assumption that ν(A) ∈ R∪ {−∞} for all A ∈ Σ.
If ν(A) ∈ R ∪ {+∞} for every A ∈ Σ, then we apply the result above for −ν. Finally the case
ν(A1) = −∞ and ν(A2) = +∞ for some A1, A2 ∈ Σ yields to the contradiction. Hence Hahn-Jordan
decomposition is proved. �

Corollary 3.3. Let (X, Σ) be a measurable space and ν ∶ Σ → R be a signed measure. Then either ν+ or
ν− is finite.

Proof. According to Theorem 3.1 we have ν = ν+ − ν− and both ν+, ν− are measures such that
ν+ ⊥ ν−. We cannot have ν+(X) = ν−(X) = +∞, because then ν(X) would be undefined. This
implies that either ν+(X) ∈ R or ν−(X) ∈ R. �
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4. LEBESGUE DECOMPOSITION

Definition 4.1. Let (X, Σ) be a measurable space and µ ∶ Σ → R be a signed measure. We say that
µ is σ-finite if there exists a decomposition

X = ⋃
n∈N

Xn

onto pairwise disjoint elements of Σ such that µ(Xn) ∈ R for every n ∈ N.

Theorem 4.2 (Lebesgue decomposition). Let (X, Σ) be a measurable space and let µ be a measure on
(X, Σ). Suppose that ν is either a signed and σ-finite measure or a complex measure on (X, Σ). Then there
exists a unique decomposition

ν = νs + νa

of measure ν such that νs ⊥ µ and νa ≪ µ.

Proof. Suppose first that ν is a finite measure. Consider

α = sup
A∈Σ, µ(A)=0

ν(A)

Since ν is finite, we derive that α ∈ R. Consider a sequence {An}n∈N such that An ∈ Σ, µ(An) = 0
for every n ∈ N and limn→+∞ ν(An) = α. Define S = ⋃n∈N An. Then µ(S) = 0 and ν(S) = α.
Moreover, if A ∈ Σ and A∩S = ∅, then µ(A) = 0 implies ν(A) = 0. Now we define νs(A) = ν(A∩S)
and νa(A) = ν(A ∖ S) for every A ∈ Σ. Then ν = νs + νa and νs ⊥ µ, νa ≪ µ.
Now assume that ν is σ-finite measure. There exists a decomposition

X = ⋃
n∈N

Xn

onto pairwise disjoint elements of Σ such that ν(Xn) ∈ R for every n ∈ N. We define νn(A) =
ν(A ∩ Xn) for each n ∈ N and A ∈ Σ. Then νn is a finite measure. By the case above we find
νn = νns + νna and νns ⊥ µ, νna ≪ µ for some measures on Σ. Now we define

νs = ∑
n∈N

νns, νa = ∑
n∈N

νan

Then ν = νs + νa and νs ⊥ µ, νa ≪ µ.
Now consider the case when ν is σ-finite and signed measure. According to Theorem 3.1 we write
ν = ν+ − ν− for measures ν+, ν− such that ν+ ⊥ ν−. Then ν+, ν− are σ-finite measures. According
to previous case we can write ν+ = ν+s + ν+a, ν− = ν−s + ν−a for measures such that ν+s ⊥ µ, ν−s ⊥
µ, ν+a ≪ µ, ν−a ≪ µ. Then νs = ν+s − ν−s, νa = ν+a − ν−a are signed measures and νs ⊥ µ, νa ≪ µ.
Finally assume that ν is complex. Then ν = νr + i ⋅ νi, where νr and νi are finite, signed measures.
Form the case above we have decompositions

νr = νr
s + νr

a, νi = νi
s + νi

s

and νr
s ⊥ µ, νi

s ⊥ µ, νr
a ≪ µ, νi

a ≪ µ. Then complex measures

νs = νr
s + i ⋅ νi

s, νa = νr
a + i ⋅ νi

a

satisfy νs ⊥ µ, νa ≪ µ. �

5. RADON-NIKODYM THEOREM

In this section we prove famous result of Radon and Nikodym.

Theorem 5.1 (Radon-Nikodym). Let (X, Σ) be a measurable space and let µ be a σ-finite measure on
(X, Σ). Suppose that ν ≪ µ for ν that is either complex measure or σ-finite, signed measure. Then there
exists a measurable function f ∶ X → C such that

ν(A) = ∫
A

f dµ

for every A ∈ Σ.
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Proof for finite measures µ, ν. Fix n ∈ N and k ∈ N. According to Theorem 3.1 there exists a set
Pn,k ∈ Σ such that

(ν − k
2n ⋅ µ)(A ∩ Pn,k) ≥ 0, (ν − k

2n ⋅ µ)(A ∖ Pn,k) ≤ 0

for every A ∈ Σ. We may assume that Pn,0 = X, Pn,k+1 ⊆ Pn,k and Pn,k = Pn+1,2k for every n, k ∈ N.
Since ν ≪ µ and ν is finite, we derive that

µ( ⋂
k∈N

Pn,k) = ν( ⋂
k∈N

Pn,k) = 0

and may assume that this set is empty for every n ∈ N. Pick n ∈ N. We define a function
fn ∶ X → C by formula

fn(x) = ∑
k∈N

k
2n ⋅ 1Pn,k∖Pn,k+1(x)

Clearly fn is a measurable, nonnegative function. If m, n ∈ N and n ≤ m, then we have

fn(x) ≤ fm(x) ≤ fn(x) + 1
2n

Thus { fn}n∈N is a nondecreasing sequence of measurable functions convergent uniformly to a
measurable function f ∶ X → C. Moreover, for every A ∈ Σ and n ∈ N we have

ν(A) − 1
2n µ(A) = ∑

k∈N

ν (A ∩ (Pn,k ∖ Pn,k+1)) −
1
2n µ(A) ≤

≤ ∑
k∈N

k + 1
2n µ (A ∩ (Pn,k ∖ Pn,k+1)) −

1
2n ∑

k∈N

µ (A ∩ (Pn,k ∖ Pn,k+1)) ≤

≤ ∑
k∈N

k
2n µ (A ∩ (Pn,k ∖ Pn,k+1)) ≤ ∑

k∈N

ν (A ∩ (Pn,k ∖ Pn,k+1)) = ν(A)

and since

∫
A

fn dµ = ∑
k∈N

k
2n µ (A ∩ (Pn,k ∖ Pn,k+1))

we derive that

ν(A) − 1
2n µ(A) ≤ ∫

A
fn dµ ≤ ν(A)

This inequality together with monotone convergence theorem imply that

ν(A) = lim
n→+∞∫A

fn dµ = ∫
A

f dµ

This finishes the proof for finite measures ν, µ. �

Reduction to finite case. Assume now that ν and µ are σ-finite measures on (X, Σ). Then there
exists a decomposition

X = ⋃
n∈N

Xn

onto disjoint subsets in Σ such that ν(Xn) ∈ R and µ(Xn) ∈ R for every n ∈ N. For every n ∈ N

we define νn(A) = ν(A ∩ Xn) and µn(A) = µ(A ∩ Xn) for A ∈ Σ. Since ν ≪ µ, we derive that
νn ≪ µn for every n ∈ N. Measures {νn}n∈N and {µn}n∈N are finite. By finite case of the theorem
we deduce that for each n ∈ N there exists a measurable function fn ∶ X → C such that

νn(A) = ∫
A

fn dµn

for every A ∈ Σ. Note that fn has nonnegative values µ-almost everywhere and can be set equal
to zero outside Xn. Thus

νn(A) = ∫
A

fn dµn = ∫
A

fn dµ
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for every A ∈ Σ. Therefore, we deduce that

ν(A) = ∑
n∈N

ν(A ∩Xn) = ∑
n∈N

νn(A) = ∑
n∈N

∫
A

fn dµ = ∫
A
(∑

n∈N

fn) dµ

by monotone convergence theorem.
Assume now that both ν is σ-finite, signed measure. In this situation we may write ν = ν+ − ν−
for measures ν+, ν− such that ν+ ⊥ ν−. Then ν+ ≪ µ and ν− ≪ µ. There exists a set P ∈ Σ such
that ν−(P) = ν+(X ∖ P) = 0. By the case considered previously there exist measurable functions
f+ ∶ X → C, f− ∶ X → C such that

ν+(A) = ∫
A

f+ dµ, ν−(A) = ∫
A

f− dµ

for every A ∈ Σ. Moreover, we may assume that f+ is equal to zero outside P and f− is equal to
zero outside X ∖ P. From this we have

ν(A) = ν+(A) + ν−(A) = ∫
A

f+ dµ +∫
A

f− dµ = ∫
A
( f+ − f−) dµ

for every A ∈ Σ.
Suppose that ν is complex measure. Write ν = νr − i ⋅ νi. Then both νr, ν− are finite, signed mea-
sures. Moreover, we have νr ≪ µ, νi ≪ µ. There exist measurable functions fr ∶ X → C and
fi ∶ X → C that are real valued and satisfy

νr(A) = ∫
A

fr dµ, νi(A) = ∫
A

fi dµ

for every A ∈ Σ. Thus

ν(A) = νr(A) + i ⋅ νi(A) = ∫
A

fr dµ + i ⋅ ∫
A

fi dµ = ∫
A
( fr + i ⋅ fi) dµ

for every A ∈ Σ. �

6. BANACH SPACE OF COMPLEX MEASURES

Proposition 6.1. Let µ be a complex measure on a measurable space (X, Σ). For every A ∈ Σ we define

∣µ∣(A) = sup{ ∑
n∈N

∣µ(An)∣ ∣ A = ⋃
n∈N

An is a partition of A onto subsets in Σ}

Then ∣µ∣ is a finite measure on (X, Σ).

Proof. Let µ = µr + i ⋅ µi be decomposition onto real and imaginary part. Then µr, µi are finite,
signed measures. By Theorem 3.1 we derive that there exist decompositions µr = µr

+ − µr
−, µi =

µi
+ −µi

− such that µr
+, µr

−, µi
+, µi

− are finite measures and µr
+ ⊥ µr

−, µi
+ ⊥ µi

−. Then for every partition

A = ⋃
n∈N

An

of A ∈ Σ onto sets in Σ we have

∑
n∈N

∣µ(An)∣ = ∑
n∈N

√
(µr(An))2 + (µi(An))

2 ≤ ∑
n∈N

(∣µr(An)∣ + ∣µi(An)∣) ≤

≤ ∑
n∈N

(µr
+(An) + µr

−(An) + µi
+(An) + µi

−(An)) = µr
+(A) + µr

−(A) + µi
+(A) + µi

−(A)

Right hand side of the inequality does not depend on the partition and hence

∣µ∣(A) ≤ µr
+(A) + µr

−(A) + µi
+(A) + µi

−(A)
This implies that ∣µ∣(A) ∈ R for every A ∈ Σ. Note also that ∣µ∣(∅) = 0. Suppose now that A ∈ Σ
and we have partitions

A = ⋃
n∈N

An = ⋃
n∈N

Cn, An = ⋃
m∈N

An,m for every n ∈ N
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onto subsets in Σ. Then

∑
n∈N

∣µ(Cn)∣ ≤ ∑
n∈N

∑
m∈N

∣µ(An ∩Cm)∣ ≤ ∑
n∈N

∣µ∣(An)

and

∑
n∈N

( ∑
m∈N

∣µ(An,m)∣) ≤ ∣µ∣(A)

These inequalities imply that
∣µ∣(A) ≤ ∑

n∈N

∣µ∣(An) ≤ ∣µ∣(A)

Therefore, ∣µ∣ is a finite measure. �

Definition 6.2. Let µ be a complex measure on (X, Σ). Then we define

∣∣µ∣∣ = ∣µ∣(X)

and call it the total variation of µ.

Theorem 6.3. Let (X, Σ) be a measurable space andM(X, Σ) be a set of all complex measures on (X, Σ).
Then the following assertions hold.

(1) M(X, Σ) is a C-linear space.

(2) The mapping
M(X, Σ) ∋ µ ↦ ∣∣µ∣∣ ∈ [0,+∞)

is a norm.

(3) Suppose that {µn}n∈N is a sequence of complex measures on (X, Σ) that is a Cauchy sequence with
respect to total variation. Then there exists a complex measure µ such that

lim
n→+∞

µn = µ

Moreover, for every A ∈ Σ we have

lim
n→+∞

µn(A) = µ(A)

Proof. We left (1) and (2) for the reader as an exercise. Fix A ∈ Σ. Then

∣µn(A) − µm(A)∣ ≤ ∣µn − µm∣(A) ≤ ∣∣µn − µm∣∣

for every n, m ∈ N. Since {µn}n∈N is a Cauchy sequence with respect to total variation, we derive
that there exists the limit µ(A) of {µn(A)}n∈N. Suppose that

A = ⋃
k∈N

Ak

for A ∈ Σ and Ak ∈ Σ for k ∈ N. Assume that sets {Ak}k∈N are disjoint. Pick N ∈ N. Then

N
∑
k=0

∣µn(Ak) − µ(Ak)∣ = lim
m→+∞

N
∑
k=0

∣µn(Ak) − µm(Ak)∣ ≤

≤ lim sup
m→+∞

∑
k∈N

∣µn(Ak) − µm(Ak)∣ ≤ lim sup
m→+∞

∣µn − µm∣(A) = lim sup
m→+∞

∣∣µn − µm∣∣

This implies that
∑

k∈N

∣µn(Ak) − µ(Ak)∣ ≤ lim sup
m→+∞

∣∣µn − µm∣∣

regardless of set A and partition {Ak}k∈N. Thus we deduce that there exists a sequence {an}n∈N

of real numbers, convergent to zero such that

∑
k∈N

∣µn(Ak) − µ(Ak)∣ ≤ an
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for every n ∈ N, A ∈ Σ and partition {Ak}k∈N as above. Therefore, for fixed N ∈ N we have

∣µ(A) −
N
∑
k=0

µ(Ak)∣ ≤ ∣µ(A) − µn(A)∣ + ∣µn(A) −
N
∑
k=0

µn(Ak)∣ +
N
∑
k=0

∣µn(Ak) − µ(Ak)∣ ≤

≤ ∣µ(A) − µn(A)∣ + ∣µn(A) −
N
∑
k=0

µn(Ak)∣ + ∑
k∈N

∣µn(Ak) − µ(Ak)∣ ≤ 2an + ∣µn(A) −
N
∑
k=0

µn(Ak)∣

Hence we derive that
µ(A) = ∑

k∈N

µ(Ak)

thus µ is a complex measure and according to

∑
k∈N

∣µn(Ak) − µ(Ak)∣ ≤ an

for every n ∈ N we deduce that
lim

n→+∞
∣µn − µ∣(A) = 0

for every A ∈ Σ. Hence also limn→+∞ ∣∣µn − µ∣∣ = 0. This finishes the proof of (3). �

7. APPLICATIONS OF RADON-NIKODYN THEOREM

Proposition 7.1. Let µ be a measure on a measurable space (X, Σ) and f ∶ X → R be a measurable,
nonnegative function. We define

ν(A) = ∫
A

f dµ

for every A ∈ Σ. Then ν is a measure on (X, Σ) and the equality

∫
X

g dν = ∫
X

g ⋅ f dµ

holds if g is either µ-integrable function g ∶ X → C of a measurable, nonnegative function g ∶ X → R.

Proof. Suppose that A = ⋃n∈N An for A ∈ Σ and An ∈ Σ for every n ∈ N. Assume also that {An}n∈N

are pairwise disjoint. Then by monotone convergence theorem

ν(A) = ∫
A

f dµ = ∫
X

1A ⋅ f dµ = ∫
X
(∑

n∈N

1An ⋅ f) dµ = ∑
n∈N

∫
X

1An ⋅ f dµ = ∑
n∈N

∫
An

f dµ = ∑
n∈N

ν(An)

Moreover, we have ν(∅) = 0. Thus ν is a measure on (X, Σ).
For the second part of the statement note that the family of measurable, nonnegative functions
g ∶ X → R satisfying equality

∫
X

g dν = ∫
X

g ⋅ f dµ

contains {1A}A∈Σ, is closed under linear combinationss with nonnegative coefficients, if it con-
tains nondecreasing sequence {gn ∶ X → R}n∈N, then it also contains its pointwise limit. Thus
this family contains all measurable, nonnegative functions g ∶ X → R. Since every real valued,
ν-integrable function g ∶ X → C is a difference of a two ν-integrable, nonnegative functions,
we deduce that this family contains all real, ν-integrable functions. Finally, if it contains two ν-
integrable, real valued functions, then it contains its C-linear combination. Thus it contains all
ν-integrable functions. �

Theorem 7.2. Let µ be a complex measure on a measurable space (X, Σ). There exists an ∣µ∣-integrable
function f ∶ X → C such that

µ(A) = ∫
A

f d∣µ∣

for every A ∈ Σ and ∣ f (x)∣ = 1 for every x in X.

For the proof we need the following result.
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Lemma 7.2.1. Let µ be a measure on (X, Σ). Suppose that f ∶ X → C is a measurable function and F is a
closed subset of C. Assume that for every A ∈ Σ such that µ(A) > 0, we have

1
µ(A) ∫A

f dµ ∈ F

Then µ (X ∖ f−1(F)) = 0.

Proof of the lemma. Let D be a closed disc in C such that D ∩ F = ∅. If µ ( f−1(D)) > 0, then

1
µ ( f−1(D)) ∫ f−1(D)

f dµ ∈ D

by convexity of D. This implies that for every closed disc in C disjoint from F we have µ ( f−1(D)) =
0. Since C∖ F can be covered by such discs, we derive that µ (X ∖ f−1(F)) = 0. �

Proof of the theorem. Consider Radon-Nikodym derivative f ∶ X → C of µ with respect to ∣µ∣. It
exists according to Theorem 5.1 and is ∣µ∣-integrable because µ is complex measure. Since

1
µ(A)

∣∫
A

f d∣µ∣∣ ≤ 1
µ(A) ∫A

∣ f ∣ d∣µ∣ =
∣µ∣(A)
µ(A)

≤ 1

for every A ∈ Σ such that A ∈ Σ, we derive by Lemma 7.2.1 that f (x) ∈ D almost everywhere
with respect to measure ∣µ∣, where D is a closed unit disc in C. Changing values of f on a set of
measure ∣µ∣ equal to zero, we may assume that f (x) ∈ D for every x in X.
Suppose next that 0 < α < 1 and denote Aα = f−1 ({z ∈ C ∣ ∣ f (z)∣ ≤ α}). Let

Aα = ⋃
n∈N

An

be a decomposition on disjoint subsets in Σ. Then

∑
n∈N

∣µ(An)∣ = ∑
n∈N

∣ ∫
An

f d∣µ∣∣ ≤ ∑
n∈N

∫
An

∣ f ∣ d∣µ∣ ≤ α ⋅ ∑
n∈N

∣µ∣(An) = α ⋅ ∣µ∣(Aα)

Hence
∣µ∣(Aα) ≤ α ⋅ ∣µ∣(Aα)

Therefore, ∣µ∣(Aα) = 0. Since α is arbitrary number in (0, 1), we deduce that

∣µ∣({z ∈ C ∣ ∣ f (z)∣ < 1}) = 0

Thus changing values of f on a set of measure ∣µ∣ equal to zero, we may assume that ∣ f (x)∣ = 1
for every x in X. �

Corollary 7.3. Let µ be a measure on a measurable space (X, Σ) and f ∶ X → C be a µ-integrable function.
Define

ν(A) = ∫
A

f dµ

for every A ∈ C. Then ν is a complex measure on (X, Σ) and

∣ν∣(A) = ∫
A
∣ f ∣ dµ

for every A ∈ Σ.

Proof. Clearly ν(A) ∈ C for every A ∈ Σ. Suppose that A = ⋃n∈N An for A ∈ Σ and An ∈ Σ for
every n ∈ N. Assume also that {An}n∈N are pairwise disjoint. Then by dominated convergence
theorem

ν(A) = ∫
A

f dµ = ∫
X

1A ⋅ f dµ = ∫
X
(∑

n∈N

1An ⋅ f) dµ = ∑
n∈N

∫
X

1An ⋅ f dµ = ∑
n∈N

∫
An

f dµ = ∑
n∈N

ν(An)



RADON-NIKODYM THEOREM, HAHN-JORDAN DECOMPOSITION AND LEBESGUE DECOMPOSITION 9

Moreover, we have ν(∅) = 0. Thus ν is a complex measure on (X, Σ). Since f is µ-integrable,
there exists a σ-finite subset Ω ∈ Σ such that ∣ f (x)∣ = 0 for x /∈ Ω. We define µ̃(A) = µ(A ∩Ω) for
every A ∈ Σ. Clearly

ν(A) = ∫
A

f dµ = ∫
A

f dµ̃

for every A ∈ Σ. Hence we have ∣ν∣ ≪ µ̃ by definition of ν and ∣ν∣. Note that µ̃ is a σ-finite measure.
By Theorem 5.1 there exists a measurable function g ∶ X → C equal to zero outside Ω such that

∣ν∣(A) = ∫
A

g dµ̃ = ∫
A

g dµ

for every A ∈ Σ. We may assume that g takes only nonnegative values. By Theorem 7.2 there
exists a function h ∶ X → C such that

ν(A) = ∫
A

h d∣ν∣

for every A ∈ Σ and ∣h(x)∣ = 1 for all x in X. By Proposition 7.1 we deduce that

∫
A

f dµ = ν(A) = ∫
A

h d∣ν∣ = ∫
A

h ⋅ g dµ

for every A ∈ Σ. Therefore, f = h ⋅ g almost everywhere with respect to µ. Thus

g(x) = ∣h(x)∣ ⋅ g(x) = ∣ f (x)∣
almost everywhere with respect to µ. �

Corollary 7.4. Let (X, Σ) be a measurable space and µ be a measure on Σ. Then the map

L1(X, µ) ∋ f ↦ (Σ ∋ A ↦ ∫
A

f dµ ∈ C) ∈M(X, Σ)

is a C-linear isometrical embedding of Banach spaces. If in addition µ is σ-finite, then the map is onto the
subspace ofM(X, Σ) consisting of complex measures which are absolutely continous with respect to µ.

Proof. The first assertion follows from Corollary 7.3 and Theorem 6.3. The second is a recapitula-
tion of Theorem 5.1. �
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