Szereg liczbowy d'Alemberta i Cauchy'ego

Istnienie i ciągłość funkcji granicznej, jednostajna zbieżność. Zmiana kolejności przejścia granicznego. Różniczkowanie i całkowanie szeregów. Istnienie i zbieżność rozwinięć Taylora, Maclaurina, Fouriera itd.
hutsalo
Użytkownik
Użytkownik
Posty: 141
Rejestracja: 14 sty 2022, o 19:44
Płeć: Mężczyzna
Podziękował: 59 razy

Szereg liczbowy d'Alemberta i Cauchy'ego

Post autor: hutsalo »

Mam do policzenia taki szerego jedną i drugą metodą:
\(\displaystyle{
\sum_{n=1}^{\ \infty } \frac{ 5^{n} \left( n! \right) ^{2} }{\left( 2n\right)! }
}\)

policzyłem to metodą d'Alemberta i wyszło
\(\displaystyle{
\frac{ 5n^{2}+10n+5 }{2n\cdot n!^{2}+ n!^{2} }
}\)

jak to można jeszcze uprościć żeby ustalić czy ten ciąg jest zbieżny czy też nie?
A tutaj jest metoda Cauchy'ego
\(\displaystyle{
\frac{5 \sqrt[n]{ (n!)^{2} } }{ \sqrt[n]{(2n)!} }
}\)

czy w jednym i w drugim przypadku mogę prosić o pomoc w wyznaczeniu czy ten ciąg jest zbieżny albo nie. Wiem że można zrobić to jedną metodą ale chciałbym się nauczyć dwóch. Czy mogę prosić o pomoc?
Ostatnio zmieniony 12 mar 2022, o 19:02 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Symbol mnożenia to \cdot.
janusz47
Użytkownik
Użytkownik
Posty: 7910
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 30 razy
Pomógł: 1670 razy

Re: Szereg liczbowy d'Alemberta i Cauchy'ego

Post autor: janusz47 »

Kryterium d'Alemberta

\(\displaystyle{ \frac{a_{n+1}}{a_{n}} = \frac{5^{n+1}\cdot [(n+1)!]^2}{[2(n+1)]!}\cdot \frac{(2n)!}{5^{n}\cdot (n!)^2} =\frac{5\cdot (n+1)^2}{(2n+1)\cdot (2n+2)} \rightarrow \ \ ... }\) gdy \(\displaystyle{ n \rightarrow \infty }\)

Kryterium Cauchy'ego

\(\displaystyle{ \sqrt[n]{a_{n}} = \sqrt[n]{\frac{5^{n}\cdot (n!)^2}{(2n)!}} = 5\cdot \sqrt[n]{\frac{(n!)^2}{n!\cdot (n+1)\cdot (n+2)\cdot ...\cdot 2n}} = 5\cdot \sqrt[n]{\frac{n!}{(n+1)\cdot (n+2) \cdot ...\cdot 2n}} \rightarrow \ \ ... }\) gdy \(\displaystyle{ n\rightarrow \infty }\)

Na podstawie kryterium d'Alemberta i Cauchyego szereg jest ...
Jan Kraszewski
Administrator
Administrator
Posty: 34125
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 3 razy
Pomógł: 5192 razy

Re: Szereg liczbowy d'Alemberta i Cauchy'ego

Post autor: Jan Kraszewski »

hutsalo pisze: 12 mar 2022, o 18:12policzyłem to metodą d'Alemberta i wyszło
\(\displaystyle{
\frac{ 5n^{2}+10n+5 }{2n\cdot n!^{2}+ n!^{2} }
}\)
To źle policzyłeś.
hutsalo pisze: 12 mar 2022, o 18:12jak to można jeszcze uprościć żeby ustalić czy ten ciąg jest zbieżny czy też nie?
Ale wiesz, na czym polega kryterium d'Alemberta? Bo badasz zbieżność szeregu, a nie ciągu.
hutsalo pisze: 12 mar 2022, o 18:12Wiem że można zrobić to jedną metodą ale chciałbym się nauczyć dwóch.
To niekoniecznie działa. W tym wypadku kryterium Cauchy'ego jest niezbyt wygodne.

JK
hutsalo
Użytkownik
Użytkownik
Posty: 141
Rejestracja: 14 sty 2022, o 19:44
Płeć: Mężczyzna
Podziękował: 59 razy

Re: Szereg liczbowy d'Alemberta i Cauchy'ego

Post autor: hutsalo »

janusz47 pisze: 12 mar 2022, o 21:15 Kryterium d'Alemberta

\(\displaystyle{ \frac{a_{n+1}}{a_{n}} = \frac{5^{n+1}\cdot [(n+1)!]^2}{[2(n+1)]!}\cdot \frac{(2n)!}{5^{n}\cdot (n!)^2} =\frac{5\cdot (n+1)^2}{(2n+1)\cdot (2n+2)} \rightarrow \ \ ... }\) gdy \(\displaystyle{ n \rightarrow \infty }\)

Kryterium Cauchy'ego

\(\displaystyle{ \sqrt[n]{a_{n}} = \sqrt[n]{\frac{5^{n}\cdot (n!)^2}{(2n)!}} = 5\cdot \sqrt[n]{\frac{(n!)^2}{n!\cdot (n+1)\cdot (n+2)\cdot ...\cdot 2n}} = 5\cdot \sqrt[n]{\frac{n!}{(n+1)\cdot (n+2) \cdot ...\cdot 2n}} \rightarrow \ \ ... }\) gdy \(\displaystyle{ n\rightarrow \infty }\)

Na podstawie kryterium d'Alemberta i Cauchyego szereg jest ...
Dobra ok. Ale czy to
\(\displaystyle{ \frac{a_{n+1}}{a_{n}} = \frac{5^{n+1}\cdot [(n+1)!]^2}{[2(n+1)]!}\cdot \frac{(2n)!}{5^{n}\cdot (n!)^2} =\frac{5\cdot (n+1)^2}{(2n+1)\cdot (2n+2)} \rightarrow \ \ ... }\) gdy \(\displaystyle{ n \rightarrow \infty }\)
i to
\(\displaystyle{ \sqrt[n]{a_{n}} = \sqrt[n]{\frac{5^{n}\cdot (n!)^2}{(2n)!}} = 5\cdot \sqrt[n]{\frac{(n!)^2}{n!\cdot (n+1)\cdot (n+2)\cdot ...\cdot 2n}} = 5\cdot \sqrt[n]{\frac{n!}{(n+1)\cdot (n+2) \cdot ...\cdot 2n}} \rightarrow \ \ ... }\) gdy \(\displaystyle{ n\rightarrow \infty }\)
to jest wszystko policzone czy da się to jeszcze jakoś uprościć?

Dodano po 37 minutach 59 sekundach:
Jan Kraszewski pisze: 12 mar 2022, o 22:48
hutsalo pisze: 12 mar 2022, o 18:12policzyłem to metodą d'Alemberta i wyszło
\(\displaystyle{
\frac{ 5n^{2}+10n+5 }{2n\cdot n!^{2}+ n!^{2} }
}\)
To źle policzyłeś.
czyli sugerujesz żeby tego nie wymnażać
\(\displaystyle{
\frac{ 5n^{2}+10n+5 }{2n\cdot n!^{2}+ n!^{2} }
}\)

tylko zostawić w takiej postaci:\(\displaystyle{ \frac{a_{n+1}}{a_{n}} = \frac{5^{n+1}\cdot [(n+1)!]^2}{[2(n+1)]!}\cdot \frac{(2n)!}{5^{n}\cdot (n!)^2} =\frac{5\cdot (n+1)^2}{(2n+1)\cdot (2n+2)} \rightarrow \ \ ... }\) gdy \(\displaystyle{ n \rightarrow \infty }\)
Ostatnio zmieniony 14 mar 2022, o 18:42 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.
a4karo
Użytkownik
Użytkownik
Posty: 22173
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 38 razy
Pomógł: 3748 razy

Re: Szereg liczbowy d'Alemberta i Cauchy'ego

Post autor: a4karo »

Sam musisz obliczyć te granice (czyli to, co powinno być za strzałkami}. Choć pewnie wyliczenie granicy w przypadku kryterium Cauchy'ego nie będzie proste. Może zamiast granicy postaraj się o jakieś oszacowanie od dołu
hutsalo
Użytkownik
Użytkownik
Posty: 141
Rejestracja: 14 sty 2022, o 19:44
Płeć: Mężczyzna
Podziękował: 59 razy

Re: Szereg liczbowy d'Alemberta i Cauchy'ego

Post autor: hutsalo »

Granica w przypadku kryterium d'Alemberta wyszła mi 5/4. Oto jak liczyłem:
\(\displaystyle{
\lim_{n \to \infty } 5n^{2} + 10n + 5
\\
\lim_{n \to \infty } 4n^{2} + 6n + 2
}\)

i teraz tak. Zarówno w pierwszym jak i drugim przypadku wychodzi mi \(\displaystyle{ \infty }\). W związku z tym że \(\displaystyle{ \frac{ \infty }{ \infty } }\) powoduje że taka granica jest nieokreślona no to upraszczam sobie to co mam tu
\(\displaystyle{
\lim_{n \to \infty } 5n^{2} + 10n + 5
\\
\lim_{n \to \infty } 4n^{2} + 6n + 2
}\)

w następujący sposób. Po pierwsze wyłączam w jednym jak i w drugim przypadku wspólny czynnik przed nawias w związku to wygląda tak:
\(\displaystyle{
\lim_{n \to \infty }\left( \frac{ n^{2} \cdot \left(5 + \frac{10}{n} + \frac{5}{ n^{2} } \right) }{ n^{2} \cdot \left( 4 + \frac{6}{n} + \frac{2}{ n^{2} } \right) } \right)
}\)

teraz skracam \(\displaystyle{ n^{2} }\) i zostaje
\(\displaystyle{ \lim_{n \to \infty }\left( \frac{ 5 + \frac{10}{n} + \frac{5}{ n^{2} } }{ 4 + \frac{6}{n} + \frac{2}{ n^{2} } } \right)
}\)

no i obliczam granice. Nie będe pokazywał tutaj wszystkich obliczeń, które wykonałem do obliczenia tych granic pokaże tylko sam wynik
\(\displaystyle{
\frac{5+10 \cdot 0+5 \cdot 0}{4+6 \cdot 0+2 \cdot 0} = \frac{5}{4}
}\)

teraz czy prawidłowo policzyłem tą granice?
janusz47
Użytkownik
Użytkownik
Posty: 7910
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 30 razy
Pomógł: 1670 razy

Re: Szereg liczbowy d'Alemberta i Cauchy'ego

Post autor: janusz47 »

Prawidłowo.
Jan Kraszewski
Administrator
Administrator
Posty: 34125
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 3 razy
Pomógł: 5192 razy

Re: Szereg liczbowy d'Alemberta i Cauchy'ego

Post autor: Jan Kraszewski »

Tylko jeszcze musisz wiedzieć, co oznacza ten wynik.
hutsalo pisze: 14 mar 2022, o 15:01 czyli sugerujesz żeby tego nie wymnażać
\(\displaystyle{
\frac{ 5n^{2}+10n+5 }{2n\cdot n!^{2}+ n!^{2} }
}\)

tylko zostawić w takiej postaci
To nie jest kwestia "wymnażania", to było źle policzone.
hutsalo pisze: 14 mar 2022, o 17:06no to upraszczam sobie to co mam tu
\(\displaystyle{
\lim_{n \to \infty } 5n^{2} + 10n + 5
\\
\lim_{n \to \infty } 4n^{2} + 6n + 2
}\)

w następujący sposób.
Niezbyt dobrze opisujesz, co tak naprawdę robisz - nie rozpatrujesz tych granic osobno, tylko jako jedną granicę ilorazu.

JK
ODPOWIEDZ