szukanie zaawansowane
 [ Posty: 6 ] 
Autor Wiadomość
Mężczyzna
 Tytuł: Delta zespolona
PostNapisane: 6 cze 2019, o 19:13 
Użytkownik

Posty: 24
Lokalizacja: wawa
Witam, mam problem... bo nie rozumiem co zrobić gdy wyniki z delty są ujemne dla równania różniczkowego. Jestem w takim miejscu: (to są pierwiastki)

r_{1}=-1 , r_{2}=1, r_{3}=i, r_{4}=-i

Jak dalej doprowadzić do głównego wyniku?
Uniwersytet Wrocławski Instytut Matematyczny - rekrutacja 2019
Góra
Mężczyzna
PostNapisane: 6 cze 2019, o 19:21 
Administrator

Posty: 24737
Lokalizacja: Wrocław
A jakie równanie rozważasz?

JK
Góra
Mężczyzna
PostNapisane: 6 cze 2019, o 19:23 
Użytkownik

Posty: 24
Lokalizacja: wawa
y ^{IV}-y=0
Góra
Mężczyzna
PostNapisane: 6 cze 2019, o 19:29 
Użytkownik
Avatar użytkownika

Posty: 13931
Lokalizacja: Wrocław
y(t)=C_1 \sin t+C_2\cos t+C_3e^t+C_4e^{-t}
Ogólnie można skorzystać z tego, że
\cos t=\frac{e^{it}+e^{-it}}{2}, \ \sin t=\frac{e^{it}-e^{-it}}{2i}
Góra
Mężczyzna
PostNapisane: 6 cze 2019, o 19:32 
Użytkownik

Posty: 24
Lokalizacja: wawa
Dlaczego tak? Skąd taki wzór na \cos t,\sin t ?
Góra
Mężczyzna
PostNapisane: 6 cze 2019, o 20:15 
Użytkownik
Avatar użytkownika

Posty: 13931
Lokalizacja: Wrocław
Mamy ze wzoru Eulera:
\cos t+i\sin t=e^{it}\\\cos(-t)+i\sin(-t)=e^{-it}
czyli
\cos t+i\sin t=e^{it}\\\cos t-i\sin(-t)=e^{-it}
gdyż sinus jest nieparzysty, a cosinus parzysty.
Dodajemy stronami i mamy 2\cos t=e^{it}+e^{-it}, dzielimy przez dwa i jest wzór na cosinus, odejmujemy stronami drugie równanie od pierwszego i dostajemy
2i\sin t=e^{it}-e^{-it},
dzielimy stronami przez 2i i mamy wzór na sinus.

Z równania charakterystycznego wychodziły nam e^{\pm i t}, no to teraz jeśli pewne dwie funkcje spełniają równanie różniczkowe liniowe jednorodne, to ich kombinacja liniowa też.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 6 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Rzeczywista i zespolona wart. własna macierzy współczynników  rymek94  1
 granica - pochodna - deltax / delta x  xxmikolajx  1
 Funkcja delta Diraca  bozon  2
 Równanie różniczkowe II. rzęfu z liczbą zespoloną - zadanie 240  chan_rozwielikaty  10
 Metoda przewidywań, ujemna delta i liczby zespolone  syrek  5
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl