szukanie zaawansowane
 [ Posty: 4 ] 
Autor Wiadomość
Kobieta
PostNapisane: 22 kwi 2018, o 22:43 
Użytkownik

Posty: 106
Lokalizacja: Polska
Mam problem z obliczeniem transmitancji operatorowej układu określonego trzema równaniami - w jaki sposób zrobić to analitycznie, na kartce?
Zamieszczam poniżej zapis układu równań po przejściu na zmienne zespolone.

xc(S)[mcS^{2}+k1+k2+b1S+b2S]+x1(S)[-k1-b1S]+x2(S)[-k2-b2S]=F(S)x1(S)[m1S^{2}+k1+k _{n}1+b1S]+xc(S)[-k1-b1S]=k _{n}1 \cdot  z(S)
x2(S)[m2S^{2}+k2+k_{n}2+b2S]+xc(S)[-k2-b2S]=k _{n}2 \cdot  z(S)
Uniwersytet Wrocławski Instytut Matematyczny - rekrutacja 2019
Góra
Mężczyzna
PostNapisane: 23 kwi 2018, o 08:54 
Użytkownik
Avatar użytkownika

Posty: 7058
Brakuje podstawowej informacji które literki są zmiennymi, a które znanymi stałymi, oraz którą transmitancję masz wyliczyć.
Założę że zmienne to: xc,x1,x2,z i należy wyliczyć \frac{z}{xc}

\begin{cases}xc(S)[mcS^{2}+k1+k2+b1S+b2S]+x1(S)[-k1-b1S]+x2(S)[-k2-b2S]=F(S)\\
x1(S)[m1S^{2}+k1+k _{n}1+b1S]+xc(S)[-k1-b1S]=k _{n}1 \cdot  z(S)\\
x2(S)[m2S^{2}+k2+k_{n}2+b2S]+xc(S)[-k2-b2S]=k _{n}2 \cdot  z(S) \end{cases}

\begin{cases}xc(S)[mcS^{2}+k1+k2+b1S+b2S]+x1(S)[-k1-b1S]+x2(S)[-k2-b2S]=F(S)\\
x1(S)=xc(S) \frac{ k1+b1S}{m1S^{2}+k1+k _{n}1+b1S}+ \frac{k _{n}1}{m1S^{2}+k1+k _{n}1+b1S}  \cdot  z(S)\\
x2(S)=xc(S) \frac{ k2+b2S}{m2S^{2}+k2+k_{n}2+b2S}+ \frac{k _{n}2}{m2S^{2}+k2+k_{n}2+b2S}  \cdot  z(S) \end{cases}

F(S)=xc(S)[mcS^{2}+k1+k2+b1S+b2S]+\\+\left( xc(S) \frac{ k1+b1S}{m1S^{2}+k1+k _{n}1+b1S}+ \frac{k _{n}1}{m1S^{2}+k1+k _{n}1+b1S}  \cdot  z(S)\right) [-k1-b1S]+\\+
\left( xc(S) \frac{ k2+b2S}{m2S^{2}+k2+k_{n}2+b2S}+ \frac{k _{n}2}{m2S^{2}+k2+k_{n}2+b2S}  \cdot  z(S)\right)  [-k2-b2S]

Upraszczając dostanę równanie o postaci:
F(S)=xc(S)A(S)+z(S)B(S)
Niestety w wyliczeniu \frac{z}{xc} przeszkadza F(s) która nie jest zależna ani od xc, ani od z.
Prawdopodobnie brakuje jednego równania z taką zależnością lub nie zgadłem które oznaczenia wskazują na stałe/zmienne.
Generalnie, aby wyliczyć transmitancję należy pozbywać się niepotrzebnych zmiennych z układu aż dostanie się równanie zawierające zmienne których stosunek jest szukany.
Góra
Kobieta
PostNapisane: 23 kwi 2018, o 11:43 
Użytkownik

Posty: 106
Lokalizacja: Polska
Oznaczenia odgadnięte prawie dobrze, umknęło mi ich podanie!
Zmienne to xc, x1 i x2, a transmitancję muszę policzyć dla każdej z nich.

-- 23 kwi 2018, o 18:43 --

W takiej sytuacji, gdy mam te trzy zmienne i trzy równania sytuacja wydaje się niby prosta, ale jakoś nie bardzo to wychodzi... :/ W jaki sposób to ugryźć?
Góra
Mężczyzna
PostNapisane: 24 kwi 2018, o 08:50 
Użytkownik
Avatar użytkownika

Posty: 7058
Nadal nie wiem jakie ilorazy masz wyliczyć. Może je podasz?

Jeśli tu faktycznie są trzy zmienne to wystarczy ten układ rozwiązać dowolną metodą.
Jednak cały czas mam wrażenie że brakuje jednego równania a zmiennych jest pięć: F,xc,x1,x2,z.
Góra
Utwórz nowy temat Odpowiedz w temacie  [ Posty: 4 ] 


 Zobacz podobne tematy
 Tytuł tematu   Autor   Odpowiedzi 
 Transmitancja operatorowa  Furi  3
 Transmitancja operatorowa - zadanie 3  k2mil  3
 transmitancja operatorowa - zadanie 2  franek89  1
 Transmitancja Operatorowa - zadanie 6  Maczos  5
 Transmitancja operatorowa - zadanie 9  voik3  1
 
Atom [Regulamin Forum] [Instrukcja LaTeX-a] [Poradnik] [F.A.Q.] [Reklama] [Kontakt]
Copyright (C) Karpatka.pl