[Stereometria] Sfera na czworościanie

Zadania z kółek matematycznych lub obozów przygotowujących do OM. Problemy z minionych olimpiad i konkursów matematycznych.
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 13381
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 3425 razy
Pomógł: 809 razy

[Stereometria] Sfera na czworościanie

Post autor: mol_ksiazkowy »

Dany jest pewien czworościan c, na którym opisano sferę \(\displaystyle{ s}\). \(\displaystyle{ \alpha, \beta, \gamma, \delta}\) są płaszczyznami stycznymi do tejże s, w odpowiednich wierzchołkach c , tj punktach A, B, C, D, przy czym \(\displaystyle{ \alpha \cap \beta=p}\), i \(\displaystyle{ \gamma \cap \delta=q}\). Wykaż, że jeśli proste p i CD nie są rozłączne, to q i AB są współpłaszczyznowe.
Ostatnio zmieniony 15 wrz 2008, o 20:43 przez mol_ksiazkowy, łącznie zmieniany 1 raz.
ODPOWIEDZ