[Stereometria] Sfera na czworościanie
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
- mol_ksiazkowy
- Użytkownik

- Posty: 13381
- Rejestracja: 9 maja 2006, o 12:35
- Płeć: Mężczyzna
- Lokalizacja: Kraków
- Podziękował: 3425 razy
- Pomógł: 809 razy
[Stereometria] Sfera na czworościanie
Dany jest pewien czworościan c, na którym opisano sferę \(\displaystyle{ s}\). \(\displaystyle{ \alpha, \beta, \gamma, \delta}\) są płaszczyznami stycznymi do tejże s, w odpowiednich wierzchołkach c , tj punktach A, B, C, D, przy czym \(\displaystyle{ \alpha \cap \beta=p}\), i \(\displaystyle{ \gamma \cap \delta=q}\). Wykaż, że jeśli proste p i CD nie są rozłączne, to q i AB są współpłaszczyznowe.
Ostatnio zmieniony 15 wrz 2008, o 20:43 przez mol_ksiazkowy, łącznie zmieniany 1 raz.